• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining

Thumbnail
Ver/
JCR- DATA-Medical Opinions (283.0Kb)
Fecha
2023-12-21
Autor
Machorro-Cano, Isaac
Ríos-Méndez, Ingrid Aylin
Palet-Guzmán, Jose Antonio
Rodriguez-Mazahua, Nidia
Rodriguez-Mazahua, Lisbeth
Alor-Hernández, Giner
Olmedo-Aguirre, Jose Oscar
Metadatos
Mostrar el registro completo del ítem
Resumen
An autopsy is a widely recognized procedure to guarantee ongoing enhancements in medicine. It finds extensive application in legal, scientific, medical, and research domains. However, declining autopsy rates in hospitals constitute a worldwide concern. For example, the Regional Hospital of Rio Blanco in Veracruz, Mexico, has substantially reduced the number of autopsies at hospitals in recent years. Since there are no documented historical records of a decrease in the frequency of autopsy cases, it is crucial to establish a methodological framework to substantiate any actual trends in the data. Emerging pattern mining (EPM) allows for finding differences between classes or data sets because it builds a descriptive data model concerning some given remarkable property. Data set description has become a significant application area in various contexts in recent years. In this research study, various EPM (emerging pattern mining) algorithms were used to extract emergent patterns from a data set collected based on medical experts’ perspectives on reducing hospital autopsies. Notably, the top-performing EPM algorithms were iEPMiner, LCMine, SJEP-C, Top-k minimal SJEPs, and Tree-based JEP-C. Among these, iEPMiner and LCMine demonstrated faster performance and produced superior emergent patterns when considering metrics such as Confidence, Weighted Relative Accuracy Criteria (WRACC), False Positive Rate (FPR), and True Positive Rate (TPR).
URI
http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/799
Temas
data mining
emerging pattern mining
medical opinions
Tipo
Article
Colecciones
  • Artículos (DCI) [72]

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias