• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determination of Soil Agricultural Aptitude for Sugar Cane Production in Vertisols with Machine Learning

Thumbnail
Ver/
processes-11-01985-v2.pdf (3.907Mb)
Fecha
2023-06-30
Autor
Landeta Escamilla, Ofelia
Alvarado-Lassman, Alejandro
Sandoval Gonzalez, Oscar Osvaldo
Flores-Cuautle, José de Jesus Agustín
Rosas-Mendoza, Erik Samuel
Martínez Sibaja, Albino
VAllejo Cantú, Norma Alejandra
Méndez Contreras, Juan Manuel
Metadatos
Mostrar el registro completo del ítem
Resumen
Sugarcane is one of the main agro-industrial products consumed worldwide, and, therefore, the use of suitable soils is a key factor to maximize its production. As a result, the need to evaluate soil matrices, including many physical, chemical, and biological parameters, to determine the soil’s aptitude for growing food crops increases. Machine learning techniques were used to perform an in-depth analysis of the physicochemical indicators of vertisol-type soils used in sugarcane production. The importance of the relationship between each of the indicators was studied. Furthermore, and the main objective of the present work, was the determination of the minimum number of the most important physicochemical indicators necessary to evaluate the agricultural suitability of the soils, with a view to reducing the number of analyses in terms of physicochemical indicators required for the evaluation. The results obtained relating to the estimation of agricultural capability using different numbers of parameters showed accuracy results of up to 91% when implementing three parameters: Potassium (K), Calcium (Ca) and Cation Exchange Capacity (CEC). The reported results, relating to the estimation of the physicochemical parameters, indicated that it was possible to estimate eleven physicochemical parameters with an average accuracy of 73% using only the data of K, Ca and CEC as input parameters in the Machine Learning models. Knowledge of these three parameters enables determination of the values of soil potential in regard to Hydrogen (pH), organic matter (OM), Phosphorus (P), Magnesium (Mg), Sulfur (S), Boron (B), Copper (Cu), Manganese (Mn), and Zinc (Zn), the Calcium/Magnesium ratio (Ca/Mg), and also the texture of the soil.
URI
http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/762
Temas
land use
vertisol soils
machine learning
soil agricultural aptitude
sugar cane
Tipo
Article
Colecciones
  • Artículos (DCI) [72]

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias