Show simple item record

dc.contributor.authorSanchez-Juarez, Jesús
dc.contributor.authorGranados-Baez, Marissa
dc.contributor.authorAguilar Lasserre, Alberto Alfonso
dc.contributor.authorCárdenas, Jaime
dc.date.accessioned2022-08-09T13:48:28Z
dc.date.available2022-08-09T13:48:28Z
dc.date.issued2022-04-06
dc.identifier.citationhttps://doi.org/10.1364/OME.454314es
dc.identifier.issn2159-3930
dc.identifier.urihttp://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/673
dc.descriptionPatrocinó el CONACYT a través del Programa Nacional de Becas y la Universidad de Rochester por medio del financiamiento de estancia en el Instituto de Óptica.es
dc.description.abstractThe unique properties of two-dimensional materials for light emission, detection, and modulation make them ideal for integrated photonic devices. However, identifying if the films are indeed monolayers is a time-consuming process even for well-trained operators. We develop an intelligent algorithm to detect monolayers of WSe2, MoS2 and h-BN autonomously using Digital Image Processing and Deep Learning with high accuracy rate, avoiding human interaction and any additional characterization tests. We demonstrate an autonomous detection algorithm for TMDC’s and h-BN monolayers with high accuracy of 99.9% with a total processing time of 9 minutes per 1cm2. .es
dc.description.sponsorshipCONACYT y Universidad de Rochesteres
dc.language.isoeses
dc.publisherOptica Publishing Groupes
dc.relation.ispartofseries12;5
dc.subjectAutomated systemes
dc.subjectDetection of 2D materialses
dc.subjectDigital image processinges
dc.subjectDeep learninges
dc.titleAutomated system for the detection of 2D materials using digital image processing and deep learninges
dc.typeArticlees


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record