• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • View Item
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of Decision Tree Algorithms for Data Warehouse Fragmentation

Thumbnail
View/Open
Artículo indizado (1.297Mb)
Date
2020-12-07
Author
Rodríguez-Mazahua, Nidia
Rodríguez-Mazahua, Lisbeth
López Chau, Asdrúbal
Alor-Hernández, Giner
Metadata
Show full item record
Abstract
One of the main problems faced by Data Warehouse designers is fragmentation. Several studies have proposed data mining-based horizontal fragmentation methods. However, not exists a horizontal fragmentation technique that uses a decision tree. This paper presents the analysis of different decision tree algorithms to select the best one to implement the fragmentation method. Such analysis was performed under version 3.9.4 of Weka, considering four evaluation metrics (Precision, ROC Area, Recall and F-measure) for different selected data sets using the Star Schema Benchmark. The results showed that the two best algorithms were J48 and Random Forest in most cases; nevertheless, J48 was selected because it is more efficient in building the model.
URI
http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/588
Temas
Data analysis
Computer systems
Databases
Artificial Intelligence
Decision making
Tipo
Article
Collections
  • Artículos (DCI) [72]

Repositorio Tecnm Orizaba copyright © 2020 
Contact Us | Send Feedback
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Repositorio Tecnm Orizaba copyright © 2020 
Contact Us | Send Feedback