• español
    • English
  • español 
    • español
    • English
  • Login
Ver ítem 
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
  •   Repositorio Tecnm Orizaba
  • Área Doctorado
  • Doctorado en Ciencias de la Ingeniería
  • Artículos (DCI)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of Decision Tree Algorithms for Data Warehouse Fragmentation

Thumbnail
Ver/
Artículo indizado (1.297Mb)
Fecha
2020-12-07
Autor
Rodríguez-Mazahua, Nidia
Rodríguez-Mazahua, Lisbeth
López Chau, Asdrúbal
Alor-Hernández, Giner
Metadatos
Mostrar el registro completo del ítem
Resumen
One of the main problems faced by Data Warehouse designers is fragmentation. Several studies have proposed data mining-based horizontal fragmentation methods. However, not exists a horizontal fragmentation technique that uses a decision tree. This paper presents the analysis of different decision tree algorithms to select the best one to implement the fragmentation method. Such analysis was performed under version 3.9.4 of Weka, considering four evaluation metrics (Precision, ROC Area, Recall and F-measure) for different selected data sets using the Star Schema Benchmark. The results showed that the two best algorithms were J48 and Random Forest in most cases; nevertheless, J48 was selected because it is more efficient in building the model.
URI
http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/588
Temas
Data analysis
Computer systems
Databases
Artificial Intelligence
Decision making
Tipo
Article
Colecciones
  • Artículos (DCI) [72]

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Repositorio Tecnm Orizaba copyright © 2020 
Contacto | Sugerencias