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Thermal properties of maize seed components
Gemima Lara Hernández1,2, Claudia Hernández Aguilar1, Arturo Domínguez Pacheco1, 
Albino Martínez Sibaja2, Alfredo Cruz Orea A.3 and Jose de Jesus Agustin Flores Cuautle4*

Abstract:  Maize (Zea Mays L.) is one of the cereals most consumed worldwide, not 
only because of food uses but also because of its industrial uses. Physical processes 
are used when transforming maize industrially, particularly thermal processes are 
employed. Because of this, it is necessary to enhance the industrial procedures that 
constitute the grain processing chain. The additional information that allows 
advances in procedures and techniques in commodities like cereals gives an advan
tage to the food industry. The processes that involve temperature are benefiting of 
thermal properties knowledge. Therefore, maize thermal properties of each compo
nent are studied. Three standard varieties of maize seeds (GSV2, SLP, and P6) were 
thermally characterized. Photopyroelectric and open photoacoustic cell techniques 
were employed for characterization. The maize analyzed components were peri
carp, endosperm (floury and vitreous), and germ. The outer maize layer’s pericarp 
presents the lowest thermal conductivity for GSV2 and P6 samples, whereas the P6 
sample components have similar thermal conductivity values. The obtained results 
show a thermal impedance between some of the maize components. The presented 
information can be used to improve the maize thermal process transformation.

Subjects: Agriculture & Environmental Sciences; Engineering Technology; Thermodynamics 

Keywords: maize grains; photothermal techniques; thermal effusivity; thermal diffusivity

1. Introduction
Maize (Zea mays L.) is the most-produced grain in the world, with more than 1 billion metric tons 
produced in 2022 (Foreign Agricultural Service, 2023). Maize is essential in Latin America, Africa, 
and Asia diets (Nuss & Tanumihardjo, 2010; Saldivar & Perez-Carrillo, 2016; Wang et al., 2015); in 
Africa, maize accounts for 19% of the calories per capita (Santpoort, 2020). The maize seed 
comprises three parts: the pericarp, endosperm, and germ, as illustrated in Figure 1 (Singh et al., 
2014). The pericarp is the grain’s most superficial or external part and the protective mantle that 
protects it. The endosperm has a carbohydrate composition and represents approximately 80 per
cent of the grain weight; it contains a significant source of starch and protein. The endosperm is 
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classified into vitreous and floury (Singh et al., 2014). The vitreous endosperm has an elongated 
appearance and is composed of starch granules and proteins. The floury endosperm is located 
directly in the center of the grain and is made up of large starch granules, and each part of the 
grain is used to obtain a large number of products.

The use of maize is not limited to food; it is considered a flexible grain because of its broad uses, 
such as flour, edible oil, and livestock feed (FAO, 2023). Industrial applications also stand out for 
maize as a biomass, biofuel, ethanol, starch source, thermoplastics, and film (Choudhary et al., 
2020; FAO, 2023; Masanabo et al., 2022; Yıldırım-Yalçın et al., 2021; Żołek-Tryznowska & Kałuża, 
2021). In other industries, as in material science, the knowledge of the thermal conductivity values 
can be used in the design and optimization of thermal insulation materials or building materials 
(Abbas et al., 2020; Lagouin et al., 2019; Mayer Laigle et al., 2021). In environmental science, 
thermal property values can be used to model and simulate the heat transfer in soils and 
sediments containing maize residues (Zhao et al., 2020).

In maize transformation, three main pathways are known: dry milling, wet milling, and nixta
malization (Saldivar & Perez-Carrillo, 2016). The endosperm and germ can be transformed into 
flour and oil in dry milling (Saldivar & Perez-Carrillo, 2016), as shown in Figure 2. Dry-milling 
includes several thermal processes, such as drying at 60°C and cooling at 24°C until it reaches 
12% moisture (Saldivar & Perez-Carrillo, 2016).

Wet milling is used to obtain starch, protein, fiber, and germ (Saldivar & Perez-Carrillo, 2016); 
a wet milling starch production flowchart is shown in Figure 3. The starch production includes 
heating the entire grain at temperatures between 48°C and 50°C, and drying germ, bran, and 
gluten (Saldivar & Perez-Carrillo, 2016). Figures 2 and 3 illustrate that the maize grain industrial 
process involves thermal processes and seed component separation (Saldivar & Perez-Carrillo, 
2016). The knowledge of the thermal properties of each part of the maize seed could help improve 
the cooking methods of products made up of each part of the grain. Even it can help enhance the 
oil extraction methods; therefore, knowledge of their thermal properties is crucial. The importance 
of maize is so high that several techniques have been used to assess maize grain quality, ranging 
from destructive to non-destructive tests (Domínguez-Pacheco et al., 2014; Hernández-Aguilar 
et al., 2015; Pacheco et al., 2013; Wang et al., 2016).

Among the non-destructive techniques, photothermal techniques have measured the thermal 
properties of solid, liquid, and gel samples with a 5% precision (Carbajal-Valdez et al., 2017; Correa- 
Pacheco et al., 2015; Xu et al., 2016). All these techniques are based on a fundamental principle: 

Figure 1. Main components of 
a maize seed.
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energy absorption by either the sample or sensor leads to heat diffusion. Detecting temperature 
variations experienced by the material under study allows for obtaining diverse information about 
its properties. Various configurations have been used to obtain the thermal properties of samples, 
including photoacoustic spectroscopy, photothermal radiometry, thermal lens spectrometry, and 
photopyroelectric technique (Balderas-López & Mandelis, 2020; Flores Cuautle et al., 2019; 
Gallardo-Hernández et al., 2017; Hernández-Aguilar et al., 2019; Lara Hernandez et al., 2020; Lara- 
Hernández et al., 2017). The Photopyroelectric Technique (PPE) has been used to characterize 
solids or liquids thermally as described elsewhere (Flores-Cuautle et al., 2009; Gallardo-Hernández 
et al., 2017; Lara Hernandez et al., 2013). The so-called Open Photoacoustic Cell (OPC) experimen
tally measured the thermal diffusivity of the solid and liquid samples (Marquezini et al., 1991; 
Velasco et al., 2011).

The literature reports photoacoustic spectroscopy (Rojas-Lima et al., 2018) and photothermal 
microscopy (Hernández-Aguilar et al., 2015) on maize grains which give an insight into the optical 
and thermal behavior of the sample; this type of study gives qualitative information, but not 
quantitative information regardless of the sample. On the other hand, those studies report the 
maize thermal information using entire grains as samples. Differential scanning calorimetry has 
been used to study maize’ pericarp (Arámbula-Villa et al., 2007); in such a study, the sample must 
undergo several grinding steps. This study analyzed each part of the corn kernel separately to 
know its thermal properties.

Figure 2. Flowchart of the 
degerming-tempering dry- 
milling process of maize. 
Reprinted from encyclopedia of 
food and health, saldivar, 
S. O. Serna Perez-Carrillo, E., 
maize, 601–609, Copyright 
2016, with permission from 
Elsevier, license 
5,505,421,441,690.
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Despite the variety of methods for evaluating grain part properties like bulk density, porosity, 
moisture, and specific heat (Carbajal-Valdez et al., 2017; Correa-Pacheco et al., 2015), more 
information must be given on the thermal properties of each maize seed component. This work 
presents measurements of the thermal effusivity and diffusivity of the pericarp, vitreous and 
floury endosperm, and germ of maize seed using two well-known techniques: Open 
Photoacoustic Cell and Inverse photopyroelectric (Flores-Cuautle et al., 2009; Lara Hernandez 
et al., 2013; Marquezini et al., 1991; Velasco et al., 2011). Thermal properties reported are an 
average of 10 tablets; additionally, each sample in tablet form is made up of samples of 
different grains of the same specie to determine the thermal properties of the specie in 
general.

Figure 3. Flowchart of the sul
fur dioxide wet-milling process 
for maize starch production. 
Reprinted from encyclopedia of 
food and health, Saldivar, 
S. O. Serna Perez-Carrillo, E., 
maize, 601–609, Copyright 
2016, with permission from 
Elsevier, license 
5,505,421,441,690.
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2. Experimental setup and procedures

2.1. Source of raw materials
Notwithstanding hundreds of maize hybrid varieties, most have a common origin in a few sig
nificant races (Goodman & Bird, 1977). Therefore, standard plant material, GSV2, SLP, and P6-133- 
CL-7 (named here as P6), was used in this study. The studied maize are enhanced varieties, P6 
corresponds to a simple cross, SPL is a free pollination, and GSV2 is a simple variety. All those 
samples are registered samples according to Mexican law (Carballo-Carballo et al., 2013) and are 
equivalent to certified seeds according to the Association of official seed certifying agencies 
(AOSCA) (Carballo-Carballo et al., 2013). Samples were obtained from Genetic Resources and 
Productivity Program, Seed Production (Programa de Recursos Genéticos y Productividad, 
Producción de semillas), Estado de México, México.

The analyzed maize contains moisture levels of 11.7 ± 0.05, 10.03± and 12.21 ± 0.08 g/100 g 
for GSV2, SLP, and P6-133×CL-7, respectively, which is allowed by Mexican Official Standard 
NMX-FF-034/1-SCFI-2002. In this sense, the moisture content of the corn satisfies the moisture 
requirement according to the standard. The standard establishes a moisture of 14% as 
a maximum value to store and preserve maize (Molteberg et al., 1995; Norma Oficial 
Mexicana, 2002) 

2.2. Seed components separation
Considering maize seed comprises three main components, each component was separated using 
a scalpel, and each sample component was settled dried. Because thermal measurements require 
a solid sample, each component was pressed into pellets. Before making the pellets, each element 
was dry ground to obtain a uniform particle size. Depending on the physical composition of each 
component (vitreous endosperm, floury endosperm, and germ), different pressures are required to 
achieve compaction of the pellets, ranging from 5 to 15 tons to form circular pellets with 9.52 mm 
diameter.

For vitreous and floury endosperm tablets, polyvinyl alcohol was used as a binding agent, and 
the alcohol was evaporated to avoid influencing the properties of the samples. The polyvinyl 
alcohol used to bind each sample was 20 µl, and the binding agent was added at the pressing 
stage using a micropipette of 20 ± 0.2 µl (Eppendorf). Sample measurements were performed after 
the polyvinyl alcohol was fully evaporated; therefore, the binding agent did not influence the 
samples’ thermal properties. In the case of the pericarp sample, the binding agent was unneces
sary because it had a film form, and in the case of the germ sample, the oil content eliminates the 
agglutinate agent necessity. Because the sample thickness value is necessary for the calculations, 
all thicknesses are obtained by sampling several points on each sample. The analyzed pellets have 

Figure 4. Experimental setup 
used to obtain the maize sam
ples’ thermal effusivity through 
the IPPE configuration (Flores 
Cuautle et al., 2019). 
Reproduced under the creative 
commons attribution 4.0 inter
national license.
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38.07, 42.80 y 53.25 µm average for GSV2, SLP, and P6 samples; all measurements were performed 
over 10 pellets.

2.3. Thermal effusivity
The photopyroelectric technique facilitates the optical and thermal characterization of various 
materials. This technique consists of frequency-modulated light impinging on one side of 
a pyroelectric (PE) sensor. The sample is placed on the opposite side of the pyroelectric sensor, 
as Figure 4 shows. This configuration is called the inverse or frontal photopyroelectric configuration 
(IPPE or FPPE) (Chirtoc & Mihailescu, 1989; Mandelis & Zver, 1985; Sahraoui et al., 2002) and can be 
used to determine thermal effusivity (e).

The theoretical expression of the pyroelectric signal in the inverse configuration is reported by 
Sahraoui and coworkers (Sahraoui et al., 2002). Assuming an optically and thermally thick pyroelectric, 
meaning the pyroelectric thermal diffusion length is smaller than the pyroelectric thickness μp � lp 

(Caerels et al., 1998), and e� 2σplp � 0, additionally it can be assumed that the gas-pyroelectric reflection 
coefficient Rgp � � 1 then, the pyroelectric signal can be expressed as Equation 1 (Caerels et al., 1998).

Where Vn ωð Þ is the normalized PE detector output signal, lp is the thickness of pyroelectric, σj ¼ iþ 1ð Þaj 

the complex coefficient of thermal diffusion, aj ¼
1=μs

{ aj ¼ ω=2αj
� �1=2 the thermal diffusion coefficient 

of the sample (s) and pyroelectric (p), ω ¼ 2πf angular frequency of incident light, Rsp ¼ b � 1ð Þ= bþ 1ð Þ, 
b ¼ es=ep, with es and ep the thermal effusivities for sample and PE, respectively, the subscript j ¼ s; p 
refers to the sample, and pyroelectric and i ¼

ffiffiffiffiffiffiffi
� 1
p

the imaginary part.

The samples were analyzed using a 150 mW Argon-ion laser (Modu-Lase Stellar-Pro) and a PZT 
as a pyroelectric sensor 200 µm thick. The IPPE signals were obtained in the 2–50 Hz range with 5% 
exponential increments for all the studied samples. The thermal properties of the pyroelectric 
sensor (αPyro ¼ 5:18� 10� 7m/s2, ePyro ¼ 2222:58 Ws1/2m−2K−1) were obtained in advance at room 
temperature (22°C) using the described experimental configuration and reference materials as 
a sample with known thermal properties.

2.4. Thermal diffusivity
The OPC technique consists of applying a modulated laser light to the sample placed on 
a microphone, as Figure 5 shows. Therefore, the sample energy absorption is converted into 
a gas pressure variation inside the photoacoustic cell. The photoacoustic cell is an electret micro
phone where the sample to be studied is placed over the opening. The microphone cavity is an 
acoustic chamber with minimal volume and without other transducers. The microphone can be 
considered electrically equivalent to a parallel RC circuit with a current source proportional to the 

Figure 5. Experimental setup 
used to obtain the thermal dif
fusivity of the maize samples 
employing the OPC configura
tion (Flores Cuautle et al.,  
2019). Reproduced under the 
creative commons attribution 
4.0 international licence.
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ratio of change of the membrane connection. When a modulated light impinges on one side of the 
sample, the opposite side of the sample acts as a piston compressing the air inside the acoustic 
chamber.

Marquezini (Marquezini et al., 1991) and Perondi (Perondi & Miranda, 1987) have already 
reported the mathematical expression for the microphone voltage on OPC configuration. When 
the sample is considered optically opaque (βls � 1,) leads to e� βls � 0 and assuming a thermally 
thick sample, which means that the product of the sample thickness times thermal diffusion 
coefficient is more than 1 (lsas � 1), the mathematical expression for the microphone voltage 
can be reduced to Eq. 2. In the case of optically transparent simples, as in the case of the pericarp, 
the sample can be turned into an optically opaque sample using a dark thin metal layer with 
known thermal properties.

Where γ is the ratio of heat capacities, P0 is the ambient pressure, I0 the absorbed light intensity, αg 

the thermal diffusivity of gas, f the modulation frequency, ks the conductivity of the sample, and ls 

the thickness of the sample. Expressing equation 2 in exponential form and taking the signal 
phase, an adjustment function was obtained depending on the angular frequency (ω) at which the 
microphone membrane oscillates, the same as the incident laser frequency. The signal phase is 
employed because it is more stable due to the immunity to optical factors and laser intensity. The 
signal phase can be expressed as

leading to

Expressions 2 and 3 demonstrate the feasibility of obtaining the thermal diffusivity of the sample by 
performing a frequency sweep. Equation 3 fits the data obtained from the measurements when 
sweeping at high frequencies. In this way, the slope-fitting parameter m was determined, and it was 
used to determine the diffusivity of the sample (αs). As sample thickness must be known to use 
Equation 4, sample thicknesses were obtained using a micrometer (Mitutoyo 2119–50) with 1 µm 
resolution. All samples’ thicknesses were obtained by sampling 10 different points of the pellets, and 
the thickness used for the thermal diffusivity calculation is the average of the measurements.

2.5. Thermal conductivity
Because the thermal properties are related, a complete thermal characterization can be achieved 
when two different thermal properties are known. Therefore, the thermal conductivity of analyzed 
samples was obtained by using the relationship between measured thermal diffusivities and 
effusivities (κ ¼ e

ffiffiffi
α
p

).

3. Results

3.1. Thermal effusivity
When the pyroelectric thermal parameters are known, thermal effusivity can be extracted from 
Equation 1 by fitting the Equation to the experimental data. The fitting can be performed using 
either the amplitude, the phase, or a complex fitting. Figure 6 shows an example of the IPPE 
normalized signal amplitude (black squares) and phase (red circles) for the germ-GSV2 sample. The 
solid lines best fit Equation 1 to the experimental data; for the fit to happen, amplitude and phase 
signals were fitted simultaneously using the thermal effusivity as a fitting parameter.
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3.2. Thermal diffusivity
The fitting is performed using the phase component of the pyroelectric signal. The phase compo
nent was used because it is more stable than the amplitude and is independent of the sample 
surface optical factors and laser intensity (Balderas-López & Mandelis, 2003). Figure 7 shows the 
best fit of Equation 3 to the phase component of the experimental data of the germ GSV2 sample. 
The solid red line is the best fit, and the squares are the experimental data; the frequency sweep 
was performed with a 5 Hz step.

Thermoelastic contributions can appear at low frequencies in the photothermal signal. This 
contribution is because of the relatively large thermal diffusion length and the small thickness of 
the sample; this was considered in the Equation 3 fitting.
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Figure 8 shows the thermal effusivity values of all the samples and their components. The 
presented error bar is the confidence interval for the performed measurements. In the error bar 
calculation, error propagation comprises the measurement uncertainty, mathematical treatment, 
and the number of samples studied. Thermal effusivity values were obtained using the procedure 
described in the methods section.

Figure 9 shows the measured thermal diffusivity values with their corresponding confidence 
intervals.

Because of the relationships of thermal properties, a complete thermal characterization of these 
samples is achieved when two thermal parameters are known. Therefore, thermal conductivity is 
obtained using the measured thermal diffusivities and effusivities (κ ¼ e

ffiffiffi
α
p

); thermal conductivity 
values are presented in Figure 10.
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Remarkably, the SPL pericarp’s thermal effusivity is 687 Ws1/2m−2K−1, more than 2.5 times the 
GSV2 pericarp value of 248 Ws1/2m−2K−1; this can be related to the postharvest treatment. The 
remaining components have an effusivity value ranging from 363 Ws1/2m−2K−1 to 678 Ws1/2m−2
K−1, which gives an insight into the thermal behavior of this seed. The germ is the grain part which 
presents more thermal property variation, which can be related to the oil content across different 
races. Because in GSV2 and SLP, there is higher oil content, and both have greater thermal 
effusivity than P6, it is reasonable to relate the oil content to the thermal effusivity.

The knowledge of oil content is also valuable because of economic reasons. The analyzed 
samples were formed using several different grains from the same race to ensure the results 
accurately represent the race information. All measurements were repeated 10 times to ensure 
a representative value; the standard deviation of measurements and error propagation were 
considered for reporting the thermal value error.

4. Conclusions
The thermal conductivity of the pericarp in the SLP variety is remarkably higher compared to GSV2 and 
P6 varieties. The thermal conductivity of the studied components of the SLP variety was close to each 
other, which means there was a low thermal impedance among the layers composing the maize variety.

The low thermal diffusivity found in the GSV2 pericarp sample can be explained due to the 
small thickness of the analyzed pericarp samples. Thermal diffusivity is proportional to the 
squared thickness and inversely proportional to the squared P parameter. GSV2 pericarp’ 
P value is the highest compared to the rest of the analyzed samples. The low thermal 
conductivity value shown by the GSV2 pericarp is because thermal conductivity is proportional 
to thermal diffusivity and effusivity, as previously mentioned.

The knowledge of the thermal properties of the maize pericarp, germ, and endosperm opens the 
windows for improving the grain and its separate components’ preservation. Thermal conductivity 
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can be used to optimize the drying process in industrial processes. In agricultural applications, the 
thermal conductivity values can be used to develop new methods for measuring maize grains’ 
moisture content and quality.

On the other hand, thermal property values can be used to optimize the production of biofuels 
from maize residues and byproducts. In general, the thermal conductivity values of maize pericarp, 
germ, and endosperm are essential parameters for understanding the thermal behavior of maize 
and its byproducts in various scientific and engineering applications.
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