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Abstract: Liver diseases are a widespread and severe health concern, affecting millions worldwide.
Non-alcoholic fatty liver disease (NAFLD) alone affects one-third of the global population, with
some Latin American countries seeing rates exceeding 50%. This alarming trend has prompted
researchers to explore new methods for identifying those at risk. One promising approach is using
Machine Learning Algorithms (MLAs), which can help predict critical factors contributing to liver
disease development. Our study examined nine different MLAs across four datasets to determine
their effectiveness in predicting this condition. We analyzed each algorithm’s performance using
five important metrics: accuracy, precision, recall, f1-score, and roc_auc. Our results showed that
these algorithms were highly effective when used individually and as part of an ensemble modeling
technique such as bagging or boosting. We identified alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP), and albumin as the top four attributes most
strongly associated with non-alcoholic fatty liver disease risk across all datasets. Gamma-glutamyl
transpeptidase (GGT), hemoglobin, age, and prothrombin time also played significant roles. In
conclusion, this research provides valuable insights into how we can better detect and prevent
non-alcoholic fatty liver diseases by leveraging advanced machine learning techniques. As such, it
represents an exciting opportunity for healthcare professionals seeking more accurate diagnostic
tools while improving patient outcomes globally.

Keywords: ensembles; health prevention; machine learning; medical data

MSC: 68T01

1. Introduction

According to the National Institute of Statistics and Geography of Mexico (INEGI,
Spanish acronym), liver disease is the sixth leading cause of death in Mexico [1], mainly
affecting people over 25. At least in 2020, Mexico recorded 41,492 deaths related to liver
disease, so the prevalence of NAFLD exceeds 50% and is considered a national health
problem [2].

The liver has many important functions, including food digestion and nutrient process-
ing and distribution. A possible sign of liver disease is when the skin turns yellow, which
is known as jaundice. Among the many different liver diseases, some, such as hepatitis, are
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caused by viruses, whereas others may be the effect of excessive alcohol consumption or
a long-term injury to the liver (i.e., cirrhosis). NAFLD is one of the most important liver
diseases [3]. It can be described as a prolonged and progressive disorder characterized by
hepatic steatosis in people who consume less than 20g of alcohol per day. Mexico has been
attributed to the escalating prevalence of NAFLD risk factors, with more than 50% of its
population showing at least one of these factors. Therefore, the medium-term for NAFLD
sufferers is very pessimistic if immediate actions are not taken to reduce what is already
considered a federal health problem [4].

Several authors have identified biomarkers to be used as a roadmap for diagnos-
ing NAFLD. Among the most important are alanine aminotransferase, gamma-glutamyl
transpeptidase [5], aspartate aminotransferase [6], alkaline phosphatase, age, and albu-
min [7]. Therefore, this analysis aims to identify the main risk factors for NAFLD in four
datasets of clinical data from patients with liver disease by applying machine learning (ML)
techniques, which is a promising technology for medical data analysis and prediction for
disease diagnosis and early detection, to contribute to healthcare professionals improving
better preventive diagnosis of NAFLD and more accurate and timely treatment. The algo-
rithms are tested using boosting, bagging (ensemble methods), and non-ensemble methods.

The remainder of this article is organized as follows: Section 2 discusses current
research on MLA in clinical datasets, MLA performance metrics, ensembles, and clinical
and data sets are available in the data science community repository. Section 3 presents our
MLA evaluation methodology. In Section 4, we present and discuss our results. Finally, in
Section 5, we conclude and provide suggestions for future work.

2. Related Work

In this section, we analyze a series of research works that use ensemble learning for
disease diagnosis and prevention. We classify the examined research into five primary
ensemble learning trends: bagging, boosting, stacking, bagging-boosting, and bagging-
boosting-stacking. These ensembles are widely implemented for the prediction and diag-
nosis of diseases such as schizophrenia, breast cancer, cardiovascular diseases, and liver
diseases, among others.

2.1. Bagging Ensembles

In their work, Lin et al. [8] established a bagging ensemble and compared it with other
algorithms to determine their efficiency in terms of schizophrenia detection. Next, the
researchers found that a bagging ensemble with attribute selection could be an applicable
method to support software tools for predicting the efficient results of schizophrenia.
Ponnaganti and Anitha [9] suggested an Ensemble Bagging Weighted Voting Classification
(EBWvc) method for the categorization of breast cancer. The researchers comparatively
evaluated five metrics, and their results showed an increased performance of the EBWvc
method if compared to similar existing classification methods. Chicco and Jurman [10]
analyzed a set of EHRs and relied on MLA to predict the diagnosis of a series of liver
diseases. The results confirmed the utility of ensemble learning for predicting the diagnosis
of hepatitis C and cirrhosis. In the study of Anisha and Saranya [11], the researchers
proposed a system for the early diagnosis of stroke disorder that relies on a homogeneous
logistic regression ensemble classifier. The results of the experiment revealed a higher
accuracy of the system than simple logistic regression initiatives. In turn, Devi et al. [12]
proposed a method to analyze the clinical features influencing liver activity. The researchers
applied Gradient Boost Regressor, Extra Tree Regressor, and Random Forest Regressor to
the analyzed clinical data to find the highest feature importance. Then, the data were fitted
to a set of classifiers to analyze performance metrics before and after feature scaling. As the
main findings, Bagging Classifier was found to retain the accuracy of 72% before and after
feature scaling with the top features from Random Forest Regressor.

In their work, Lin et al. [13] compared a bagging ensemble with other algorithms and
found that a bagging ensemble framework may provide a suitable approach to building
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tools for predicting cognitive function in schizophrenia. From a similar perspective, the
research of Ejiofor and Ochei [14] relied on the strong capability of the ensemble bagging
machine learning technique for predicting breast cancer. The bagging ensemble was
implemented on two MLAs as base learners. The validation exhibited an accuracy value
of 74% and 51% for Linear Regression (LR) and Decision Tree (DT), respectively. Rahman
and Mahmood [15] proposed a model for identifying key biomarkers for heart disease.
To this end, the researchers implemented three classification algorithms: Random Forest
(RF), K-Nearest Neighbors (KNN), and Naïve Bayes, and three approaches: Lasso, Mutual
Information, and Recursive Feature Elimination. Additionally, the researchers employed the
bagging ensemble approach with RF to improve the results of their model, which exhibited
85.18% of accuracy through Recursive Feature Elimination with Bagging (Random Forest).
In their work, Thomgkam et al. [16] explored the performance and effectiveness of machine
learning methods. Their findings revealed that RF is superior to bagging in all the analyzed
criteria. In turn, S. Yadav and Singh [17] implemented a model with classifiers to categorize
patients affected by Parkinson’s disease. As their main findings, Support Vector Classifier
exhibited the highest accuracy (93.83%) on the basic classifiers, whereas bagging exhibited
73.28% accuracy from the ensemble technique.

2.2. Boosting Ensembles

In their work, Buyrukoglu [18] suggested ensemble learning methods to improve
classification performance compared to single MLAs. The best classification performance
of ensemble methods was achieved by boosting the ensemble (AdaBoost) (92.7%). The
study found that the classification rate with ensemble learning methods increased between
3.2% and 7.2% compared to the AdaBoost ensemble method with single-based ML ap-
proaches. Researchers A. Singh et al. [19] constructed an intelligent hybrid approach for
the identification of hepatitis. To avoid clinical experience, the approach relies on ensemble
learning to reduce estimation time using many learners to solve a liver disease problem.
After comparing different metrics, the findings revealed that both the k-means clustering
and improved ensemble learning methodology achieved improved prediction results than
other existing individual and integrated models. In Sarvestany et al. [20], the researchers
trained six MLAs to identify advanced fibrosis. The MLA exhibiting the highest accuracy
was an ensemble algorithm of classical algorithms. In turn, Dutta et al. [21] discussed
liver disease diagnosis through different data mining algorithms. The best algorithm for
liver disease detection was found to be DT, achieving an accuracy of 99.96%. The study of
Verma and Mentha [22] suggested a novel ensemble learning algorithm for the classification
of five datasets of the University of California Irvine (UCI). The researchers concluded
that the suggested ensemble learning method is remarkably appropriate for handling the
classification problem in the bioinformatics domain.

2.3. Stacking Ensembles

In their work, Meng [23] built a stacking ensemble model to predict the disorder
evolution and medical results of Alpha-1-antitrypsin deficiency-associated liver disease
(AATD-LD). The model uses meta-learning by mixing several supervised MLAs and can
be implemented to predict the clinical outcome of other similar diseases. Al Telaq and
Hewahi [24] proposed a method to predict liver disease by applying multiple MLAs on
a public liver disease dataset. The results revealed that ensemble learning of different
classifiers exhibited the highest accuracy (88%). In Gupta and Gupta [25], the researchers
recommended a stacking architecture for efficiently predicting the diagnosis of cervical
cancer. In Ponnaganti and Anitha [9], the researchers built a decision support system
using the ensemble model with different metrics to evaluate the performance of the model.
The researchers showed that the proposed method recorded a notable accuracy of 97% in
classifying breast cancer data. Pouriyeh et al. [26] research aimed to evaluate the accuracy
of different data mining classifiers for heart disease prediction using ensemble ML. The
study used the Cleveland heart disease dataset, different classifiers, and applied classifier
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ensemble prediction, bagging, boosting, and stacking to the dataset. The results of the
experiment revealed that the Support Vector Machines (SVM) method with boosting outper-
formed the other methods. Kabir and Ludwing [27] attempted to improve the classification
performance of multiple MLAs using super learning or stacked ensembles. The experiment
results showed that super learning had a better classification performance than the individ-
ual base learners. Doganer et al. [28] compared the performance of different MLAs and
found that stacking ensembles outperformed boosting, voting, bagging ensembles, and
ML methods.

2.4. Bagging and Boosting Ensembles

Hakim et al. [29] evaluated the implementation of two ensemble-based MLAs of bag-
ging and boosting with five different base classifiers for predicting myocardial infarction.
The results showed that bagging with RF achieved higher accuracy. The research of Ya-
dav and Pal [30] applied rule-based classification algorithms on a prepared dataset with
three selected algorithms by bagging and boosting ensemble methods and calculated four
metrics on a diabetes dataset. The research revealed that bagging exhibited the highest
accuracy, namely, 98%. In Gao et al. [31], the researchers used different ensemble learning
methods to improve heart disease prediction and compared these methods with MLAs.
The results revealed that the bagging ensemble learning method with DT achieved the best
performance. In the study by Taser [32], bagging and boosting methods were implemented
using six different decision tree-based (DTB) classifiers on experimental data to predict
diabetes. The experimental results showed that bagging and boosting outperformed the
individual DTB classifiers. In Niranjana et al. [33], researchers evaluated the performance
of different classification ensembles in the early detection of coronary heart disease based
on risk factors. The Bagged Trees Ensemble Classifier was found to have the highest classifi-
cation accuracy using four performance metrics. The research of Fraiwan et al. [34] studies
various DTB ensemble methods to tackle the challenge of multi-class classification, and
with their proposed approach, these methods achieved the highest classification accuracy
(99.17%). The work of Dhilsath et al. [35] relied on two boosting classifiers and one bagging
classifier to build a model for heart disease prediction. The research aims to evaluate the
efficiency of grid search algorithms and random search algorithms by tuning the gradient
boost parameters (GB), Adaboost, and RF. The findings revealed that the tunning strategy
increased the ensemble learner’s efficiency.

2.5. Bagging, Boosting, and Stacking Ensembles

In their work, Khanam et al. [36] applied an ExtraTreeClassifier (ETC) method to
find the highly significant features of cervical cancer using different ensemble methods,
including bagging, boosting, and stacking. The results of the experiment revealed that
stacking combined with RF, SVM, ETC, Extreme Gradient Boosting (XGBoost), and bagging
exhibited the highest accuracy (94.4%). In Niranjana et al. [33], the research aimed at
predicting coronary heart disease by applying a risk factor method. Using predictive
techniques, the researchers evaluated only three metrics, and their results showed that
the stacked ensemble was the most effective in terms of accuracy. In Bang et al. [37], the
researchers used 18 ML classifiers to determine prediction models of curative resection
with different variables on early gastric cancer (U-EGC). As the main finding, XGBoost
exhibited the best performance.

According to our literature review, the top eight MLAs used in different ensembles to
detect and diagnose diseases such as heart disease, diabetes, breast cancer, liver disease,
and schizophrenia include DT, RF, KNN, LR SVM, Artificial Neural Network (ANN), GB,
and AdaBoost. In addition, current initiatives to detect and diagnose these chronic diseases
are mainly based on the use of bagging and boosting ensembles with KNN, SVM, AdaBoost,
RF, DT, NN, and logistic regression algorithms.
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3. Materials and Methods

The following section describes how we analyzed the performance of nine MLAs
independently and with two ML ensembles (bagging and boosting) on the four liver
disease datasets.

3.1. Datasets

We identified four main datasets on clinical open access for liver diseases: the BUPA
liver disorders (BLD) dataset, the Hepatocellular Carcinoma (HCC) Survival dataset, the
Indian Liver Patient Dataset (ILPD), and the Cirrhosis Prediction Dataset (CPD). Table 1
summarizes the characteristics of each of these datasets.

Table 1. Characteristics of liver disease datasets.

Dataset Number of
Attributes

Number of
Classes

Number of
Records Prediction/Diagnosis

BUPA Liver
Disorders 6 1 345 Prediction/Diagnosis

HCC Survival 49 1 165 Prediction
ILPD 9 1 313 Diagnosis
CPD 19 1 424 Prediction

The BUPA liver disease database [38] is an open access database which is maintained
in the Irvine University of California (UCI) online repository. It is often used to predict liver
disorders based on blood tests and alcohol consumption. In addition, the BUPA dataset
contains two classes, six numerical attributes, and 345 records (Table 2).

Table 2. Description of the Attributes of the BUPA Liver Disorders Dataset.

Attribute Name Attribute Description

Mcv Mean corpuscular volume
Alkphos Alkaline phosphatase

Sgpt Alanine aminotransferase
Sgot Aspartate aminotransferase

Gammagt Gamma-glutamyl transpeptidase
Drinks Number of half-pint equivalents of alcoholic beverages drunk per day
Selector Field created by BUPA researchers to split the data into trains/test sets

The data in the HCC Survival Dataset were collected from a university hospital in
Portugal [39]. The dataset is open access, and it is stored in the online repository of UCI [40].
It contains accurate clinical data on 165 HCC patients. In addition, the HCC Survival
Dataset contains two classes, 49 numerical attributes, and 165 records (Table 3).

Table 3. Description of the Attributes of the HCC Survival Dataset.

Attribute Name Attribute Description

Gender Gender of the patient
Symptoms Symptoms

Alcohol Alcohol
HBsAg Hepatitis B Surface Antigen
HBeAg Hepatitis B e Antigen
HBcAb Hepatitis B Core Antibody
HCVAb Hepatitis C Virus Antibody

Cirrhosis Cirrhosis
Endemic countries Endemic countries

Smoking Smoking
Diabetes Diabetes
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Table 3. Cont.

Attribute Name Attribute Description

Obesity Obesity
Hemochromatosis Hemochromatosis

AHT Arterial Hypertension
CRI Chronic Renal Insufficiency
HIV Human Immunodeficiency Virus

NASH Nonalcoholic Steatohepatitis
Esophageal varices Esophageal varices

Splenomegaly Splenomegaly
Portal hypertension Portal hypertension

Portal vein thrombosis Portal vein thrombosis
Liver metastasis Liver metastasis

Radiological hallmark Radiological hallmark
Age at diagnosis Age at diagnosis

Grams/day Grams of Alcohol per day
Packs/year Packs of cigarettes per day

Performance status Performance status
Encephalopathy Encephalopathy

Ascites Ascites degree
INR International Normalized Ratio
AFP Alpha-Fetoprotein (ng/mL)

Hemoglobin Hemoglobin (g/gL)
MCV Mean Corpuscular Volume (fl)

Leukocytes Leukocytes (G/L)
Platelets Platelets (G/L)
Albumin Albumin (mg/dL)
Total Bil Total bilirubin (mg/dL)

ALT Alanine Transaminase (U/L)
AST Aspartate Transaminase (U/L)
GGT Gamma Glutamyl Transferase (U/L)
ALP Alkaline phosphatase (U/L)
TP Total proteins (g/dL)

Creatinine Creatinine (mg/dL)
Number of nodules Number of nodules

Major dimension Major dimension of nodule
Dir. Bil Direct bilirubin (mg/dL)

Iron Iron (mcg/dL)
Sat Oxygen saturation (%)

Ferritin Ferritin (ng/mL)

The ILPD [41] contains 146 liver patient records and 167 non-liver patient records. The
dataset was collected from patients in the northeast of Andhra Pradesh, India (Table 4).

Table 4. Description of the Attributes of the ILPD.

Attribute Name Attribute Description

Age Age of the patient
Gender Gender of the patient

TB Total Bilirubin
DB Direct Bilirubin

Alkphos Alkaline Phosphatase
Sgpt Alanine Aminotransferase
Sgot Aspartate Aminotransferase
TP Total Proteins

ALB Albumin
A/G Albumin Ratio and Globulin Ratio

Selector Field used to split the data into two sets (labeled by the experts)
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The CPD [42] contains data collected from de Mayo Clinic trial in primary biliary
cirrhosis (PBC) with a total of 424 PBC patients and 20 attributes. It is an open access
dataset stored in the online repository of Kaggle (Table 5).

Table 5. Description of the Attributes of the CPD.

Attribute Name Attribute Description

ID Unique Identifier

N_Days
Number of days between registration and the

earlier of death, transplantation,
or study analysis time in July 1986

Status Status of the patient: C (censored), CL (censored due to liver tx),
or D (death)

Drug Type of drug D-penicillamine or placebo
Age Patient age in days
Sex M(male) or F (female)

Ascites Presence of ascites: N (No) or Y (Yes)
Hepatomegaly Presence of hepatomegaly: N (No) or Y (Yes)

Spiders Presence of spiders: N (No) or Y (Yes)

Edema
Presence of edema: N (no edema and no diuretic therapy for edema),

S (edema present without diuretics, or edema resolved by diuretics), or
Y (edema despite diuretic therapy)

Bilirubin Serum bilirubin in [mg/dL]
Cholesterol Serum cholesterol in [mg/dL]

Albumin Albumin in [gm/dL]
Copper Urine copper in [ug/day]

Alk_Phos Alkaline phosphatase in [U/L]
SGOT SGOT in [U/mL]

Triglycerides Triglycerides in [mg/dL]
Platelets Platelets per cubic [mL/1000]

Prothrombin Prothrombin time in seconds [s]
Stage Histologic stage of disease (1, 2, 3, or 4)

3.2. Machine Learning Classifiers

We have employed nine distinct classifying procedures from various domains of ma-
chine learning. The classifiers adopt a linear statistical approach, including LR [43], three
tree-based techniques: RF [44], ExtraTrees (ETT) [45], and DT [46]; one SVM model [47]; an
instance-based learning algorithm [48]. Additionally, we utilized three ensemble boosting
methods consisting of GB [49], LightGBM (LGBM) [50], and AdaBoost [51]. We evaluated
the performance of each method independently as well as with two ML ensembles- bag-
ging technique [52] and boosting methodology [53]. Finally, all results were accurately
documented for further analysis purposes.

3.3. Methodology

In order to evaluate the main risk factors of liver disease on clinical datasets, we
employed a six-staged methodology as outlined in Guarneros-Nolasco et al. [54]. To en-
hance our analysis, we incorporated ensemble techniques such as bagging and boosting (as
depicted in Figure 1) into this process. The Python programming language [55] and the
Scikit–Learn [56] library algorithms were used. The stages involved were: (1) loading data
dataset; (2) pre-processing data; (3) selecting attributes; (4) running ML models with bag-
ging and boosting ensembles; (5) applying evaluation metrics; and finally; (6) processing
MLA/classifier/ensemble performance results.
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Figure 1. Methodology for evaluating liver disease datasets.

Each strategy arrangement can be depicted as follows:

1. Load data dataset. Select and stack information from the dataset containing clinical
records of patients with liver diseases;

2. Pre-process dataset. Audit stacked information to get their content. At that point,
select the classification variable to obtain the best results.

3. Select attributes or main risk factors. Use RF to select the top two and top four
attributes from each dataset. Split data for training and testing (i.e., 70% for training
and 30% for testing) and k = 10 cross-validation. Similary, calculate the best parameters
for RandomizedSearchCV for n_estimators, max_attributes, and max_depth. Most of
the algorithms have these parameters in common, except for KNN. The parameter
ramdom_state was set to 42 in all the assessments;

4. Run ML classifiers, bagging ensemble, and boosting ensemble: Apply the nine ML
classifiers to observe members with liver illnesses from healthy people. Tune bagging
and boosting parameters such as n_estimators and max_samples on the train and test
split and cross-validation techniques;

5. Apply evaluation metrics. Analyze MLA classification performance with respect to
five criteria: accuracy, precision, recall, f1-score, and area under the curve (ROC-AUC);

6. Process performance results. Assemble and compare execution values from the nine
MLAs with the bagging and boosting ensembles and record such outcomes for further
analysis. At that point, select the best-performing MLA or ensemble.

4. Results and Discussion

In this section, we discuss the results of the ML performance analyses for five perfor-
mance evaluation metrics or criteria (see step 5 of the methodology). We performed the
performance evaluations of the classifiers first using the train-test split method (70–30%)
and then using k-fold cross-validation (k = 10). We recorded five performance measures
during the evaluations: accuracy, precision, recall, f1 score, and roc_auc.

4.1. Attribute Selection in Datasets

We analyzed the performance of RF to identify the top four attributes in the datasets.
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(a) The BUPA Liver Disorders Dataset. We applied RF with the six numerical attributes
of the dataset to identify and select the six most important ones. Figure 2a depicts the
ranking of these attributes from the most important to the least important;

(b) HCC Survival Dataset. The 49 attributes were ranked using RF on the HCC Survival
dataset. Figure 2b depicts a graph of said ranking. As in the previous case, the top six
attributes were used in the classifier performance;

(c) ILPD. The 10 attributes were ranked using RF on the ILPD dataset. Figure 2c depicts
a graph ranking the first six attributes, of which the top six were used in the analysis;

(d) CPD. The 19 attributes were ranked using RF in this dataset. Figure 2d graphically
shows the ranking of said attributes, of which the top six were used in the analysis.
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4.2. Results

We analyzed the performance of the nine ML classifiers (i.e., AdaBoost, DT, ETT, GB,
KNN, LGBM, LR, RG, and SVC) on the top four attributes of each dataset using the train-
test data split technique (70–30%), cross-validation and no ensembles, bagging ensemble,
and boosting ensemble. We tuned bagging and boosting parameters such as n_estimators
and max_samples with the train and test split and cross-validation techniques. The analysis
results are discussed below.
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4.2.1. Classifier Performance on the BUPA Dataset

We tested the performance of the nine ML classifiers (AdaBoost, DT, ET, GB, KNN,
LGBM, LR, RF, and SVC) on the top four attributes of the BUPA dataset. These attributes
comprised gammagt (score = 20.84), sgpt (score = 20.48), sgot (score = 16.48), and alkphos
(score = 16.42). Tables 6–8 summarize the results of our analysis.

Table 6. Non-ensemble learning performance analysis of classifiers on top four attributes—BUPA
dataset.

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Non-ensemble
learning

Train and
test split

AdaBoost 66.35 69.23 75.00 72.00 64.77
DT 65.38 70.00 70.00 70.00 64.55
ETT 72.12 73.85 80.00 76.80 70.68
GB 68.27 70.15 78.33 74.02 66.44

KNN 66.35 74.51 63.33 68.47 66.89
LGBM 65.38 70.00 70.00 70.00 64.55

LR 73.08 74.24 81.67 77.78 71.52
RF 70.19 72.31 78.33 75.20 68.71

SVC 70.19 69.86 85.00 76.69 67.50

Cross-
validation

AdaBoost 66.95 69.78 75.97 72.24 70.40
DT 58.87 64.53 65.88 64.09 57.44
ETT 68.09 70.25 77.70 73.48 71.96
GB 66.69 69.32 76.20 71.93 73.02

KNN 65.19 70.45 67.50 68.44 67.42
LGBM 70.45 73.53 77.94 75.11 73.00

LR 68.66 70.18 81.42 74.59 71.59
RF 69.61 71.50 79.66 74.92 71.41

SVC 71.60 71.21 86.49 77.62 74.58

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

Table 7. Bagging classifier performance analysis using nine base learners on the BUPA dataset (top
four attributes).

Ensemble Technique Base Estimator
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Bagging
ensemble

Train and test
split

AdaBoost 68.27 69.57 80.00 74.42 66.14
DT 71.15 72.73 80.00 76.19 69.55
ETT 74.04 74.63 83.33 78.74 72.35
GB 67.31 69.70 76.67 73.02 65.61

KNN 70.19 70.42 83.33 76.34 67.80
LGBM 65.38 68.18 75.00 71.43 63.64

LR 73.08 74.24 81.67 77.78 71.52
RF 68.27 69.01 81.67 74.81 65.83

SVC 71.15 70.27 86.67 77.61 68.33

Cross-
validation

AdaBoost 68.39 70.33 76.46 70.95 69.62
DT 69.01 73.99 76.67 74.12 72.84
ETT 71.29 70.67 83.09 75.91 73.88
GB 71.61 71.69 80.93 74.26 75.84

KNN 67.50 67.95 81.69 74.11 70.22
LGBM 69.86 73.17 79.83 74.74 75.28

LR 69.81 70.29 81.07 74.52 71.73
RF 69.28 71.83 81.71 76.03 74.51

SVC 69.55 69.13 84.87 76.38 75.18

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.
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Table 8. Boosting ensemble learning performance analysis of classifiers on the BUPA dataset (top
four attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Boosting
ensemble

Train and test
split

AdaBoost 66.35 71.19 70.00 70.59 65.68
GB 66.35 68.66 76.67 72.44 64.47

LGBM 65.38 70.00 70.00 70.00 64.55

Cross-
validation

AdaBoost 62.87 67.14 69.85 67.99 68.76
GB 68.14 71.37 75.35 72.60 69.05

LGBM 66.97 70.54 74.99 72.15 71.33

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

As can be observed from Table 6, with non-ensemble learning, we calculated algorithm
performance using default values. With train and test split, LR exhibited the best results
in terms of accuracy (73.08%). When using cross-validation, SVC exhibited the highest
accuracy (71.60%). Conversely, the lowest-performing classifiers with respect to accuracy
included DT and LGBM (65.38%) in train and test split and DT (58.87%) in cross-validation.
Regarding precision, KNN proved to be the best-performing classifier in train and test split,
while LGBM in cross-validation, with precision scores of 74.51% and 73.53%, respectively.
The lowest-performing classifiers in terms of precision were AdaBoost (69.23%) with train
and test split and DT (64.53%) with cross-validation. In conclusion, on the BUPA dataset
with train and test split, LR exhibited good performance in terms of accuracy, f1-score,
and roc_auc, whereas KNN outperformed in precision, and SVC outperformed in terms of
recall. As for cross-validation, SVC exhibited the best results in accuracy, recall, f1-score,
and roc_auc, whereas LGBM exhibited the best performance in precision.

With the bagging ensemble classifier, we used number of trees = 50 and max_samples = 0.5.
As can be observed from Table 7, ETT achieved the highest accuracy (74.04%) with train
and test split, whereas GB exhibited the highest accuracy with cross-validation (71.61%).
Conversely, the lowest-performing classifiers with respect to accuracy included LGBM
(65.38%) in train and test split and KNN (67.50%) in cross-validation. As for precision, ET
proved to be the best-performing classifier (74.63%) when using train and test split and
DT when using cross-validation (73.99%). The lowest-performing classifiers in terms of
precision were LGBM (65.18%) in train and test split and KNN (67.95%) in cross-validation.
In conclusion, on the BUPA dataset, when using the train and test split, ETT exhibited
good performance in terms of accuracy, precision, f1-score, and roc_auc, whereas SVC
exhibited the best results in recall. Conversely, when using cross-validation, GB achieved
the best results in accuracy, and roc_auc and DT outperformed the other classifiers in terms
of precision, and SVC exhibited the best performance in recall and f1-score.

With the boosting ensemble classifier, we used the best arguments for the BUPA
dataset, including n_estimators = 200, max_depth = None, and max_features = sqrt. Our
results revealed that when using train and test split, AdaBoost and GB exhibited the best
accuracy results (66.35%), whereas GB outperformed when using cross-validation (68.14%).
Conversely, the lowest-performing classifiers with respect to accuracy included LGBM
(65.38%) with train and test split and AdaBoost (62.87%) with cross-validation. As regards
precision, AdaBoost proved to be the best-performing classifier with train and test split
and GB with cross-validation (scores of 71.19% and 71.37%, respectively). On the other
hand, the lowest-performing classifiers in terms of precision were GB (68.66%) when using
train and test split and AdaBoost (67.14%) when using cross-validation (see Figure 3). In
conclusion, on the BUPA dataset using a boosting ensemble AdaBoost exhibited good
performance with train and test split in terms of accuracy, precision, and roc_auc, whereas
GB proved to be the best-performing classifier in recall and f1-score. On the other hand,
with cross-validation, GB outperformed in accuracy, precision, recall, and f1-score, whereas
LGBM exhibited the best performance in terms of roc_auc.
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4.2.2. Classifier Performance on the CPD

We tested the performance of the nine ML classifiers on the top four attributes
of the CPD. The selected attributes comprised prothrombin (score = 13.25), albumin
(score = 12.19), platelets (score = 11.22), and age (score = 9.05). Tables 9–11 summarize the
results of the analysis.

Table 9. Non-ensemble learning performance analysis of classifiers on the CPD (top four attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Non-ensemble
learning

Train and
test split

AdaBoost 69.05 57.14 45.45 50.63 63.58
DT 57.14 41.07 52.27 46.00 56.01
ETT 65.08 50.00 40.91 45.00 59.48
GB 66.67 52.78 43.18 47.50 61.23

KNN 62.70 44.00 25.00 31.88 53.96
LGBM 69.05 56.76 47.73 51.85 64.11

LR 65.87 51.43 40.91 45.57 60.09
RF 66.67 52.78 43.18 47.50 61.23

SVC 64.29 47.37 20.45 28.57 54.13

Cross-
validation

AdaBoost 71.79 60.04 48.54 53.06 68.53
DT 61.98 45.64 50.57 47.17 59.29
ETT 68.20 55.01 44.48 48.57 72.01
GB 72.74 62.84 49.90 54.83 71.64

KNN 67.69 54.42 28.71 37.10 62.58
LGBM 69.86 58.37 49.44 52.36 68.32

LR 72.25 66.00 41.75 50.04 75.84
RF 70.10 59.51 46.65 51.60 72.01

SVC 69.36 70.17 22.43 32.04 65.46

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

As can be observed from Table 9, with non-ensemble learning, LGBM achieved the
best results in terms of accuracy (69.05%) with the train and test split technique, whereas
GB exhibited the highest accuracy (72.74%) with cross-validation. Conversely, DT was the
lowest-performing classifier in accuracy with both train and test split and cross-validation,
with scores of 57.14% and 61.98%, respectively. Regarding precision, AdaBoost proved to
be the best-performing classifier in train and test split (57.14%), while SVC showed the best
results in cross-validation (70.17%). The lowest-performing classifier in terms of precision



Mathematics 2023, 11, 3026 13 of 26

was DT with both train and test split and cross-validation, with scores of 41.07% and
45.64%, respectively. In conclusion, on the CPD with train and test split, LGBM exhibited
good performance in accuracy, f1-score, and roc_auc, whereas AdaBoost showed the best
results in precision. Also, DT exhibited the best results in terms of recall. On the other hand,
with cross-validation, GB outperformed the other classifiers in accuracy and f1-score. SVC
exhibited the best performance in precision, DT showed the highest score in recall, and LR
outperformed the other classifiers in terms of roc_auc.

Table 10. Bagging classifier performance using nine base learners on the CPD (top four attributes).

Ensemble Technique Base Estimator
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Bagging
ensemble

Train and test
split

AdaBoost 66.67 52.78 43.18 47.50 61.23
DT 66.67 52.94 40.91 46.15 60.70
ETT 65.87 51.61 36.36 42.67 59.04
GB 65.87 51.52 38.64 44.16 59.56

KNN 61.90 42.86 27.27 33.33 53.88
LGBM 67.46 54.05 45.45 49.38 62.36

LR 65.87 51.43 40.91 45.57 60.09
RF 66.67 52.94 40.91 46.15 60.70

SVC 65.08 50.00 20.45 29.03 54.74

Cross-
validation

AdaBoost 73.21 68.28 50.39 55.73 72.68
DT 69.15 58.06 44.34 51.55 72.80
ETT 71.05 65.23 43.33 53.12 74.97
GB 71.54 66.56 49.38 55.51 74.62

KNN 69.37 59.01 31.13 41.82 65.58
LGBM 70.81 65.67 49.62 54.10 72.20

LR 72.01 67.23 41.75 49.06 75.99
RF 72.02 66.37 43.09 54.18 75.15

SVC 68.39 60.33 16.24 29.15 65.09

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

Table 11. Boosting ensemble learning performance analysis of classifiers on the CPD (top four
attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Boosting
ensemble

Train and test
split

AdaBoost 66.67 52.38 50.00 51.16 62.80
GB 63.49 47.62 45.45 46.51 59.31

LGBM 65.08 50.00 47.73 48.84 61.06

Cross-
validation

AdaBoost 66.51 50.60 44.22 46.69 63.68
GB 67.50 52.35 45.32 48.10 68.25

LGBM 67.72 53.89 48.65 50.00 67.33

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

As summarized in Table 10, with the bagging ensemble classifier, we used number of
trees = 50 and max_samples = 0.5. With the train and test split strategy, LGBM achieved the
highest accuracy (67.46%), whereas AdaBoost exhibited the highest accuracy (73.21%) with
cross-validation. Conversely, the lowest-performing classifiers with regards to accuracy
were KNN (61.90%) in train and test split and SVC (68.39%) in cross-validation. Regarding
precision, LGBM proved to be the best-performing classifier (54.05%) in train and test
split, and AdaBoost exhibited the highest score during cross-validation (68.28%). The
lowest-performing classifiers in precision included KNN (42.86%) in train and test split
and DT (58.06%) in cross-validation. In conclusion, on the CPD with train and test split,
LGBM exhibited good performance in accuracy, precision, recall, f1-score, and roc_auc.
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Conversely, with cross-validation, AdaBoost showed the best results in accuracy, precision,
recall, and f1-score, while LR outperformed the other classifiers in roc_auc.

As observed in Table 11, we analyzed the performance of the boosting ensemble using
the best arguments, i.e., n_estimators = 500, max_depth = 3, and max_features = auto.
With the train and test split technique, AdaBoost achieved the highest accuracy (66.67%),
whereas LGBM displayed the highest accuracy score (67.72%) with the cross-validation
technique. On the other hand, the lowest-performing classifiers with regard to accuracy
included GB (63.49%) with train and test split and AdaBoost (66.51%) with cross-validation.
As for precision, AdaBoost proved to be the best-performing classifier in train and test split
(52.38%), while LGBM achieved the highest score with cross-validation (53.89%). On the
other hand, GB (47.62%) was the lowest-performing classifier in terms of precision with
train and test split, and AdaBoost showed the lowest score (50.60%) with cross-validation
(see Figure 4). In conclusion, in the boosting ensemble applied on the CPD, AdaBoost
exhibited good performance with train and test split across the five metrics. However, with
cross-validation, LGBM outperformed the other classifiers in accuracy, precision, recall,
and f1-score, whereas GB exhibited the best performance in roc_auc.
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4.2.3. Classifier Performance on the HCC Survival Dataset

We tested the performance of the nine ML classifiers on the top four attributes of the
HCC Survival dataset. The selected attributes comprised AFP (score = 11.17), hemoglobin
(score = 7.11), ALP (score = 6.24), and albumin (score = 6.22). Tables 12–14 summarize the
results of the analysis.

As summarized in Table 12, with non-ensemble learning, DT and GB achieved the
highest accuracy (75.81%) with train and test split, while GB exhibited the highest accuracy
(74.60%) with cross-validation. On the other hand, the lowest-performing classifier in terms
of accuracy was SVC in both train and test split and cross-validation, with scores of 45.16%
and 53.95%, respectively. As for precision, GB and DT proved to be the best-performing
classifiers (75.81%) with the train and test split strategy, whereas KNN exhibited the best
result in cross-validation (76.00%). SVC in train test split and LR in cross-validation were the
lowest-performing classifiers in precision, with values of 43.33% and 41.01%, respectively.
In conclusion, on the HCC Survival dataset with train and test split, GB and DT exhibited
good performance in accuracy, precision, f1-score, and roc_auc, whereas SVC outperformed
the other classifiers in recall with a value of 100%. When using cross-validation, GB
outperformed the other classifiers in accuracy, f1-score, and roc_auc. Additionally, KNN
exhibited the best performance in precision, and SVC displayed the best score in recall.
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Table 12. Non-ensemble learning performance analysis of classifiers on the HCC Survival dataset
(top four attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Non-ensemble
learning

Train and
test split

AdaBoost 67.74 59.38 73.08 65.52 68.48
DT 75.81 68.97 76.92 72.73 75.96
ETT 69.35 62.07 69.23 65.45 69.34
GB 75.81 68.97 76.92 72.73 75.96

KNN 67.74 60.71 65.38 62.96 67.41
LGBM 70.97 64.29 69.23 66.67 70.73

LR 62.90 54.29 73.08 62.30 64.32
RF 70.97 65.38 65.38 65.38 70.19

SVC 45.16 43.33 100.00 60.47 52.78

Cross-
validation

AdaBoost 72.55 73.41 70.56 71.06 78.57
DT 66.71 66.81 63.89 64.47 66.81
ETT 74.55 72.74 74.87 73.09 82.39
GB 74.60 74.20 73.14 73.17 83.65

KNN 73.12 76.00 67.81 70.12 75.54
LGBM 69.64 70.41 69.57 68.76 79.87

LR 57.38 41.01 52.90 45.51 74.11
RF 73.98 74.27 71.91 72.49 82.53

SVC 53.95 52.51 99.23 67.73 80.02

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

Table 13. Bagging classifier performance analysis using nine base learners on top four attributes—
HCC Survival dataset.

Ensemble Technique Base Estimator
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Bagging
ensemble

Train and test
split

AdaBoost 74.19 66.67 76.92 71.43 74.57
DT 69.35 65.22 57.69 61.22 67.74
ETT 69.35 62.96 65.38 64.15 68.80
GB 74.19 69.23 69.23 69.23 73.50

KNN 70.97 65.38 65.38 65.38 70.19
LGBM 69.35 62.07 69.23 65.45 69.34

LR 62.90 54.84 65.38 59.65 63.25
RF 74.19 69.23 69.23 69.23 73.50

SVC 45.16 43.33 100.00 60.47 52.78

Cross-
validation

AdaBoost 75.98 77.71 79.60 78.59 82.99
DT 73.50 74.86 72.99 76.24 82.59
ETT 76.50 75.91 75.55 74.41 83.74
GB 76.98 78.45 77.67 76.48 84.98

KNN 73.57 75.28 72.17 71.95 75.82
LGBM 74.55 75.53 73.42 71.08 82.81

LR 73.14 71.86 74.91 72.02 80.06
RF 77.45 76.27 76.75 76.42 84.56

SVC 49.60 45.26 69.23 51.99 79.92

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

With the bagging ensemble classifier, we used number of trees = 50 and max_samples = 0.5.
When using the train and test split strategy, AdaBoost, GB, and RF achieved the highest
accuracy score (74.19%), whereas RF exhibited the highest accuracy score (77.45%) with
cross-validation. On the other hand, SVC proved to be the lowest-performing classifier
in accuracy, with values of 45.16% and 49.60% in train and test split and cross-validation,
respectively. As regards precision, GB and RF exhibited the best score with train and test
split (69.23%), while GB outperformed the other classifiers when using the cross-validation
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technique (78.45%). The lowest-performing classifier in precision was SVC, with scores of
43.33% in train and test split and 45.26% in cross-validation. In conclusion, on the HCC
Survival dataset with train and test split, AdaBoost exhibited good performance in accuracy,
f1-score, and roc_auc. GB performed best in accuracy and precision and SVC in recall.
Conversely, with cross-validation, AdaBoost displayed the highest recall and f1-scores, RF
outperformed in accuracy, and GB exhibited the highest scores in precision and roc_auc.

Table 14. Boosting ensemble learning performance analysis of classifiers on the HCC Survival dataset
(top four attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Boosting
ensemble

Train and test
split

AdaBoost 66.13 57.58 73.08 64.41 67.09
GB 75.81 68.97 76.92 72.73 75.96

LGBM 69.35 62.96 65.38 64.15 68.80

Cross-
validation

AdaBoost 72.07 72.24 71.54 71.07 78.95
GB 74.60 74.20 73.14 73.17 83.65

LGBM 71.07 71.52 71.74 70.64 80.95

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

We analyzed the performance of the ML classifiers (see Table 14) with the boosting en-
semble using best arguments n_estimators = 100, max_depth = 3, and max_features = auto.
With the train and test split strategy, GB displayed the best accuracy score (75.81%), whereas
GB exhibited the highest accuracy (74.60%) with cross-validation. Conversely, the lowest-
performing classifiers in accuracy included AdaBoost Classifier (66.13%) with train and
test split and LGBM (71.07%) with cross-validation. As regards precision, GB proved to be
the best-performing classifier in both train and test split and cross-validation with scores
of 68.97% and 74.20%, respectively. The lowest-performing classifiers in precision were
AdaBoost (57.58%) with train and test split and LGBM (71.52%) with cross-validation (see
Figure 5). In conclusion, on the HCC Survival dataset using a boosting ensemble, GB ex-
hibited the highest performance scores across the five metrics and with the two validation
strategies: train and test split and cross-validation.
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4.2.4. Classifier Performance on ILPD Dataset

We tested the performance of the nine ML classifiers (AdaBoost, DT, ETT, GB, KNN,
LGBM, LR, RG, and SVC) on the top four attributes of the ILPD dataset. The selected
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attributes comprised Alkphos (score = 14.83), Sgot (score = 13.18), Sgpt (score = 12.86), and
age (score = 12.83). Tables 15–17 summarize the results of the analysis.

Table 15. Non-ensemble learning performance analysis of classifiers on top four attributes—ILPD.

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Non-ensemble
learning

Train and
test split

AdaBoost 73.14 79.41 85.04 82.13 63.35
DT 66.29 78.81 73.23 75.92 60.57
ETT 69.71 76.43 84.25 80.15 57.75
GB 68.57 76.09 82.68 79.25 56.96

KNN 67.43 78.69 75.59 77.11 60.71
LGBM 73.14 79.85 84.25 81.99 64.00

LR 74.29 74.40 98.43 84.75 54.42
RF 70.29 77.37 83.46 80.30 59.44

SVC 72.57 72.57 100.00 84.11 50.00

Cross-
validation

AdaBoost 69.46 76.06 83.34 79.35 69.51
DT 62.95 74.09 73.86 73.75 53.92
ETT 68.95 76.02 82.61 78.85 71.34
GB 69.46 76.01 84.11 79.54 71.56

KNN 63.29 75.04 73.01 73.83 66.49
LGBM 70.66 77.69 82.90 79.89 71.36

LR 71.51 73.88 93.55 82.22 72.52
RF 68.44 75.83 81.81 78.48 71.39

SVC 71.35 71.35 100.00 83.08 61.78

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

Table 16. Bagging classifier performance using nine base learners on the ILPD (top four attributes).

Ensemble Technique Base Estimator
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Bagging
ensemble

Train and test
split

AdaBoost 76.00 78.15 92.91 84.89 62.08
DT 70.86 76.76 85.83 81.04 58.54
ETT 71.43 75.16 90.55 82.14 55.69
GB 71.43 75.84 88.98 81.88 56.99

KNN 72.00 74.68 92.91 82.81 54.79
LGBM 71.43 76.92 86.61 81.48 58.93

LR 74.86 74.85 98.43 85.03 55.46
RF 70.86 75.33 88.98 81.59 55.95

SVC 72.57 72.57 100.00 84.11 50.00

Cross-
validation

AdaBoost 70.65 76.32 89.09 83.01 71.23
DT 70.32 75.93 84.97 79.85 72.07
ETT 70.15 74.56 88.62 81.15 73.62
GB 71.69 75.69 87.93 81.74 73.31

KNN 69.97 73.82 87.99 80.24 68.17
LGBM 69.12 74.86 87.00 79.67 72.74

LR 72.03 74.49 93.10 82.32 72.62
RF 70.65 75.22 88.14 80.97 72.72

SVC 71.35 71.35 100.00 83.08 69.71

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

As summarized in Table 15, with non-ensemble learning, LR displayed the best results
in accuracy with both train and test split and cross-validation (74.29% and 71.51%, re-
spectively). However, DT proved to be the lowest-performing classifier in accuracy with
both train and test split and cross-validation (66.29% and 62.95%, respectively). As far
as precision is concerned, LGBM proved to be the best-performing classifier, with scores
of 79.85% in train and test split and 77.69% in cross-validation. The lowest-performing
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classifier in precision was SVC with both train and test split and cross-validation (72.579%
and 71.35%, respectively). In conclusion, on the ILPD with train and test split, LR exhibited
good performance in accuracy and f1-score, LGBM outperformed the other classifiers in
precision and roc_auc, and SVC exhibited the highest score in recall. With cross-validation,
LR exhibited the highest score in accuracy and roc_auc, LGBM in precision, and SVC in
f1-score and recall.

Table 17. Boosting ensemble learning performance analysis of classifiers on the ILPD (top four attributes).

Ensemble Technique Predictive Model
Performance Evaluation Metrics

% Accuracy % Precision % Recall % f1-Score % roc_auc

Boosting
ensemble

Train and test
split

AdaBoost 72.00 79.55 82.68 81.08 63.21
GB 68.00 77.10 79.53 78.29 58.51

LGBM 73.14 79.85 84.25 81.99 64.00

Cross-
validation

AdaBoost 68.59 75.69 82.28 78.64 68.07
GB 67.57 75.89 79.94 77.64 68.97

LGBM 68.77 75.79 82.53 78.75 71.52

The best-performing results for the critical metrics calculated by each algorithm are shown in bold.

As summarized in Table 16, with the bagging ensemble classifier, we used number of
trees = 100 and max_samples = 0.4. With the train and test split strategy, AdaBoost exhibited
the best result in accuracy (76.00%), while LR exhibited the highest accuracy (72.03%)
with cross-validation. Conversely, the lowest-performing classifiers in accuracy were DT
(70.86%) with train and test split and LGBM (69.12%) with cross-validation. Regarding
precision, AdaBoost proved to be the best-performing classifier with both strategies, train
and test split and cross-validation, with scores of 78.15% and 76.32%, respectively. In
precision, the lowest-performing classifiers were SVC (72.57%) with train and test split
and 71.35% with cross-validation. In conclusion, on the ILPD, AdaBoost exhibited good
performance in accuracy, precision, and roc_auc with train and test split. LR outperformed
the other classifiers in f1-score and SVC in terms of recall. On the other hand, when using
cross-validation, LR outperformed in accuracy, AdaBoost in precision, SVC in f1-score and
recall, and ETT in roc_auc.

As observed in Table 17, we analyzed the performance of the classifiers with the boost-
ing ensemble using best arguments for ILPD, i.e., n_estimators = 100, max_depth = 7, and
max_features = auto. With both train and test split and cross-validation, LGBM exhibited
the best result accuracy, with values of 73.14 and 68.77%, respectively. Conversely, GB was
the lowest-performing classifier with respect to accuracy, with values of 68.00% during
train and test split and 67.57% during cross-validation. As for precision, LGBM proved
to be the best-performing classifier with the train and test split technique (79.85%) and
GB with cross-validation (75.89%). The lowest-performing classifiers in precision included
GB (77.10%) with train and test split and AdaBoost (75.69%) with cross-validation (see
Figure 6). In conclusion, on the ILPD using a boosting ensemble, LGBM exhibited the
best performance across the five metrics with train and test split. On the other hand, with
cross-validation, LGBM outperformed in accuracy, recall, f1-score, and roc_auc, and GB
exhibited the best results in precision.

4.3. Most Important Dataset Attributes

This research aims to identify the top four attributes or risk factors for the detection
and prevention of liver disease by finding the best precision and accuracy results from the
nine ML classifiers in different ensembles. We compared the results obtained from all the
non-ensemble and ensemble (bagging and boosting) analyses and found out that the nine
ML classifiers performed adequately on all the datasets with the two performance analysis
strategies: train and test split and cross-validation (see Figure 7). Similarly, we noted that
the bagging ensemble improved the accuracy of ET and AdaBoost on the BUPA and ILPD
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datasets with train and test split. However, in three of the four datasets (BUPA, CPD, and
HCC Survival Dataset), the algorithms performed much better with cross-validation.
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Concerning the precision metrics, Figure 8 shows that the classifiers adequately per-
formed for all the top four attribute classifications. Additionally, we found that when
working with the BUPA and the HCC Survival datasets, the classifiers performed bet-
ter in precision when using the bagging ensemble, whereas, in the ILPD, the classifiers
performed much better with the boosting ensemble. On the other hand, when dealing
with the non-ensemble method on the datasets, we achieved better classifier performance
results on the ILPD and the HCC Survival dataset. As for the best-evaluated technique,
train-and-test split validation worked best on the BUPA dataset, the CPD, and the ILPD.
On the other hand, on the HCC Survival dataset, some algorithms performed better when
using train-and-test split with the boosting ensemble, whereas some others worked best
when using both the bagging ensemble and the non-ensemble models.
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We identified the main attributes for diagnosing liver disease in the four datasets due
to the previous analysis (Table 18). On the BUPA dataset, such attributes include gam-
magt (gamma-glutamyl transpeptidase), sgpt (alanine aminotransferase), sgot (aspartate
aminotransferase), and alkphos (alkaline phosphatase). Regarding the best ensemble per-
formance with train and test split, the bagging ensemble with ETT achieved the best results
in accuracy (74.04%), precision (74.63%), f1-score (78.74%), and roc_auc with (72.35%). On
the other hand, SVC yielded the best recall performance (86.67%). When using k-fold
cross-validation, the bagging ensemble with GB exhibited the best performance in accuracy
(71.61%) and roc_auc (75.84%), while DT outperformed the other classifiers in precision
(73.99%). SVC with no ensemble displayed the best results in recall (84.87%) and f1-score
(76.38%).
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Table 18. Main risk factors identified in the four datasets for the diagnosis and prediction of liver disease.

Data Best Rated Feature Description

BUPA

Gammagt Gamma-glutamyl transpeptidase
Sgpt Alanine aminotransferase
Sgot Aspartate aminotransferase

alkphos Alkaline phosphatase

HCC SURVIVAL DATASET

AFP Alpha-Fetoprotein (ng/mL)
Hemoglobin Hemoglobin (g/dL)

ALP Alkaline phosphatase (U/L)
Albumin Albumin (mg/dL)

ILPD

Alkphos Alkaline Phosphatase
Sgot Aspartate Aminotransferase
Sgpt Alanine Aminotransferase
Age Age of the patient

CPD

Prothrombin prothrombin time in seconds [s]
Albumin albumin in [gm/dL]
Platelets platelets per cubic [mL/1000]

Age Age of the patient

In the HCC Survival dataset, the main attributes identified included AFP (alpha-
fetoprotein), hemoglobin (hemoglobin), ALP (alkaline phosphatase), and albumin (albu-
min). With train and test split, DT without ensemble achieved the best performance in
accuracy (75.81%), precision (68.97%), f1-score (72.33%), and roc_auc (75.96%), whereas
SVC exhibited the best results in recall (100.00%). Regarding precision, RF and GB with
the bagging ensemble yielded the best performance (69.23%). On the other hand, when
using k-fold cross-validation with the bagging ensemble, RF exhibited the highest score in
accuracy (77.45%), GB in precision (78.45%), roc-auc (84.98%), and AdaBoost in f1-score
(78.59%). SVC exhibited the best performance with no ensemble in recall (99.23%).

In the ILPD dataset, the main attributes identified included Alkphos (alkaline phos-
phatase), Sgot (aspartate aminotransferase), Sgpt (alanine aminotransferase), and age (age
of the patient). Regarding the best ensemble performance with train and test split, the bag-
ging ensemble with AdaBoost achieved the best accuracy (76.00%), while LR displayed the
best score in the f1-score (85.03%). With no ensemble, LGBM showed the best performance
in precision (79.85%), SVC in recall (100.00%), and LGBM in roc_auc (64.00%). On the
other hand, when using k-fold cross-validation with the bagging ensemble, LR showed the
best results in accuracy (72.03%) and ETT in roc_auc (73.62%). With no ensemble, LGBM
exhibited the best performance in precision (77.69%), while SVC outperformed the other
classifiers in recall (100.00%) and f1-score (83.08%)

In the CPD, the main attributes identified included prothrombin (prothrombin time in
seconds [s]), albumin (albumin in [gm/dl]), platelets (platelets per cubic [ml/1000]), and
age (Age of the patient). The non-ensemble method achieved the best accuracy (69.05%)
and precision (57.14%) with AdaBoost, whereas, in recall, DT outperformed the other
classifiers (52.27%). Similarly, LGBM exhibited the best score in f1-score (51.85%) and
roc_auc (64.11%). When using k-fold cross-validation, the bagging ensemble performed
best with AdaBoost in accuracy (73.21%) and f1-score (55.73%) and with LR in roc_auc
(75.99%). With no ensemble, SVC showed the best performance in precision (70.17%) and
DT in recall (50.57%).

From our previous discussion, we concluded that the nine ML classifiers achieved
adequate performance in the classification of the top four dataset attributes and can be
successfully used for liver disease prediction.

The implemented algorithms validate the main features considered relevant for the
diagnosis of liver diseases according to the literature, as shown in Table 18. Of the variables
identified in the BUPA, HCC Survival, ILPD, CPD, alanine aminotransferase is strongly
related to metabolic syndrome in NAFLD [57], alkaline phosphatase is an important serum
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analyte that can be elevated in liver disease [58], and aspartate aminotransferase is a
significant marker for alcoholic liver disease [6]. Testing of alanine aminotransferase [59]
and aspartate aminotransferase is important in children with symptoms of possible liver
disease, such as jaundice, dark urine, nausea, vomiting, or belly pain. Alkaline phosphatase
in older female patients with isolated elevated alkaline phosphatase and risk factors for
NAFLD should be evaluated for evidence of significant steatohepatitis [60]. Two other
important risk factors are prothrombin [61] (identified in the CPD) and albumin [62]
(identified in the HCC Survival dataset and the CPD). Prothrombin levels in liver disease
are important indicators of liver function and pathology [63], and albumin binding function
is a novel biomarker for early liver damage in NAFLD [64]. Both prothrombin and albumin
must be primarily monitored when suspecting the presence of NAFLD. Platelets are another
critical risk factor for liver disease [62,65]. Platelet counts can be performed to monitor or
diagnose liver diseases or to look for the cause of too much bleeding or clotting. As for
patient age, it was identified as a top risk factor for liver disease in the CPD and ILPD,
which is consistent with the fact that cirrhosis can start at an early age [62]. In the BUPA
dataset, gamma-glutamyl transpeptidase surfaced as a major risk factor for liver disease.
Serum gamma GT activity is a valuable diagnostic tool for liver disease in children [66].
A GGT test is often used to diagnose liver disease and determine whether liver damage
is due to liver disease or bone disease. The test is also used to check for blocked bile
ducts and detect or monitor alcohol use disorder. When monitoring results are higher
than normal, it may be a sign of liver damage caused by hepatitis, cirrhosis, alcohol use
disorder, pancreatitis, diabetes, congestive heart failure, or a side effect of a medication.
Finally, Alpha-fetoprotein (AFP) is a biomarker that can be used in the diagnosis and
monitoring of liver diseases, particularly hepatocellular carcinoma (HCC) [67]. Accordingly,
the algorithms implemented in the different ensembles identified the markers considered
the main risk factors for liver disease in the datasets evaluated.

5. Conclusions and Future Directions

In this research, we aimed to compare the performance of nine machine learning
algorithms (MLAs) across four datasets in predicting liver disease based on the top four
attribute classifications using different ensembles with train-test split strategy and k-fold
cross-validation methods. Our results indicated that alanine aminotransferase, aspartate
aminotransferase, alkaline phosphatase, and albumin were identified as significant risk fac-
tors for liver diseases such as hepatitis, cirrhosis, alcohol use disorder, pancreatitis, diabetes,
and mainly the aim of our study NAFLD. Additionally, gamma-glutamyl transpeptidase,
hemoglobin, age, prothrombin, alpha-fetoprotein, and platelets contributed significantly
toward detection. Our main findings revealed that the analyzed MLAs exhibited the best
performance in the BUPA dataset and the CPD across the five performance metrics with
non-ensemble learning. However, in the bagging ensemble, only ETT and LR exhibited high
accuracy. The studied algorithms were classified appropriately to predict if a person were to
have non-alcoholic fatty liver disease and exhibited good accuracy and precision across the
four datasets. As for which classifier exhibited the highest accuracy with train and test split,
AdaBoost outperformed in the ILPD using a bagging ensemble. As for cross-validation, the
HCC Survival dataset obtained the best performance with RF using a bagging ensemble.
The main contribution of this research is to validate the top risk factors for NAFLD: alanine
aminotransferase, alkaline phosphatase, aspartate aminotransferase, alpha-fetoprotein, and
gamma-glutamyl transpeptidase. Having proper medical follow-up on these attributes can
contribute to the early diagnosis and treatment of non-alcoholic fatty liver disease. As for
future proposals, research into medical databases for other common ailments, such as colon
and breast cancer, is suggested. In addition, the risk factors detected in this research can
be prioritized in mobile applications aimed at diagnosing and monitoring liver diseases.
Finally, creating a database with the main attributes of liver diseases (risk factors) from var-
ious sources, such as clinical datasets, portable devices, mobile applications, and medical
records, would be interesting. This goal could be achieved using big data methodologies
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combined with machine learning, which will play a crucial role in improving our standard
of living.
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