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Abstract: Data warehousing gives frameworks and means for enterprise administrators to method-
ically prepare, comprehend, and utilize the data to improve strategic decision-making skills. One
of the principal challenges to data warehouse designers is fragmentation. Currently, several frag-
mentation approaches for data warehouses have been developed since this technique can decrease
the OLAP (online analytical processing) query response time and it provides considerable benefits
in table loading and maintenance tasks. In this paper, a horizontal fragmentation method, called
FTree, that uses decision trees to fragment data warehouses is presented to take advantage of the
effectiveness that this technique provides in classification. FTree determines the OLAP queries with
major relevance, evaluates the predicates found in the workload, and according to this, builds the
decision tree to select the horizontal fragmentation scheme. To verify that the design is correct, the
SSB (star schema benchmark) was used in the first instance; later, a tourist data warehouse was built,
and the fragmentation method was tested on it. The results of the experiments proved the efficacy of
the method.

Keywords: horizontal fragmentation; decision tree; data warehouse; cost model; data mining

1. Introduction

Fragmentation is a design technique in distributed databases that divides database
tables into fragments and deals with them like separate database objects; three alternatives
exist for this purpose: horizontal, vertical, and hybrid fragmentation. The foundation
of the first type of partitioning is the select operator because the selection predicates
define the horizontal partitioning; in contrast, the vertical one is carried out by applying
the project operator. Hybrid fragmentation involves combining horizontal and vertical
fragmentation [1].

A data warehouse (DW) is an integrated, nonvolatile, time-changeable, and subject-
oriented data repository that aids in the decision-making activity of the administration.
Data warehousing gives frameworks and means for enterprise administrators to methodi-
cally prepare, comprehend, and utilize the data to make strategic decisions. DW systems are
beneficial assets in the current dynamic and competitive world. Therefore, recently, several
corporations (e.g., the Assistance Publique-Hôpitaux de Paris (AP-HP) [2], the National
Aeronautics and Space Administration (NASA) Ames Aviation Systems Division [3], John
Deere, and DowDuPont [4]) have invested a lot of money in building company-wide data
warehouses. The most accepted data model for the development of data warehouses is the
multidimensional model, commonly presented as a star, a fact constellation, or a snowflake
schema. The star schema is the most conventional modeling paradigm, where the DW is
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principally composed of a considerably central table (fact table) that contains the volume of
the data with no redundancy, and a group of smaller auxiliary tables (dimension tables),
one for every single dimension [5]. The main features of data warehouses are (1) their data
complexity because of the presence of hierarchy attributes, (2) a high amount of data, and
(3) the query complexity due to the presence of joins and aggregations [6].

For a few decades, various fragmentation methods for DW have been presented since
this technique has the advantage of minimizing OLAP (online analytical processing) query
response time as well as having important benefits in the operations of table loading and
maintenance [7]. DW fragmentation is more complex and challenging compared to object-
oriented and relational database partitioning due to the variety of options for fragmenting a
star schema. In a DW, either the dimension tables, the fact table, or both can be fragmented.
Most of the proposed work focuses on horizontal fragmentation because fact tables typically
have a high data volume, i.e., they are about millions of tuples [8], and queries usually
only require a subset of them. Horizontal fragmentation typically divides DW tables into
partitions of tuples according to the workload.

The main advantages of decision trees are that their construction does not require
domain expertise or configuration, they deal with multidimensional data, the steps of
learning and classification involved in decision tree induction are uncomplicated and quick,
and they achieve adequate performance. Furthermore, decision trees are important in
classification because they permit obtaining pure partitions (tuple subsets) in a data set
utilizing measures including the Gini index, information gain, and gain ratio. Most decision
tree induction algorithms have a top-down approach; the decision tree is recursively built
by dividing the training data into smaller subsets. The representation of knowledge learned
in the shape of a tree is intuitive and usually easy for humans to assimilate; in addition,
decision tree classifiers have good precision [9].

Until the time of analyzing the state of the art for this paper, the development of a
horizontal fragmentation algorithm for data warehouses that uses decision trees has not
been published. The use of a decision tree to horizontally fragment a relational database
considering OLTP (online transaction processing) workloads has been reported in [10];
however, [10] does not take into account the characteristics of a DW such as the multidi-
mensional model and OLAP queries. This article describes a horizontal fragmentation
method, called FTree, which is focused on obtaining fragmentation schemes that decrease
the OLAP query execution cost. To achieve this, first, a comprehensive analysis of the
literature about existing horizontal fragmentation methods for DW was realized, and later,
FTree was introduced. FTree begins selecting the relevant decision support queries by
examining the predicates employed by the workload, and then according to these, it builds
the decision tree to choose the horizontal fragmentation scheme. To verify the effectiveness
of FTree, the SSB (star schema benchmark) was used in the first instance; later, a tourist data
warehouse was developed, and the fragmentation method was tested on this, achieving
results that prove the benefit obtained by FTree. Subsequently, some experiments were
carried out to compare the horizontal fragmentation scheme (HFS) obtained by FTree
with J48 versus the scheme selected by other classifiers; for this comparison, a cost model
was used considering that the cost of a decision support query qi consists of the amount
of irrelevant data accessed (ITC) as well as the volume of relevant data located in other
fragments (RTC).

Therefore, the contributions of this paper are two-fold: first, a new horizontal frag-
mentation method for DW is proposed, and second, a cost model to evaluate horizontal
fragmentation schemes is introduced.

This paper is made up of the following parts: Section 2 provides the analysis of
different works about horizontal fragmentation techniques. Section 3 introduces FTree.
Section 4 relates the findings obtained in the development of the fragmentation method
and discussion. Finally, Section 5 addresses future work and gives the conclusion.
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2. State of the Art of Horizontal Fragmentation Methods

In the literature, some algorithms have been developed to address the challenge
of choosing a horizontal fragmentation scheme from a given DW. They are classified as
minterm generation algorithms [1], affinity-based algorithms, cost-model-driven algo-
rithms, and data-mining-based algorithms, to mention a few [11]. This section presents
some related horizontal fragmentation (HF) techniques and their main characteristics.

The approach proposed in [12] presented a method that uses linear programming to
resolve the NP-hard problem of finding an HF scheme in a relational DW. The problem was
determined in two concurrent objectives, named: the I/O amount required to answer the
queries, and the number of partitions produced to recognize the optimal solutions matched
to the Pareto dominance concept.

According to [13], although many techniques have been proposed to speed up data
access in the DW, they cannot be applied directly to the object-relational DW (ORDW),
since it involves abstract data types for complex data stored in an object format. Therefore,
the authors proposed a partition-based approach to efficiently access data in an ORDW.
The approach has three steps: (1) obtaining minterm predicates, (2) partitioning the object-
relational scheme by derived horizontal partitioning, and (3) fragment selection based on
DW properties and query trends.

In contrast, in [14], to obtain fewer fragments and improve the performance of OLAP
queries, Kechar and Nait-Bahloul fragmented horizontally just the fact table considering
the selectivity of the predicates, their occurrence amount, and their access frequencies. They
proposed to split only the fact relation without using the primary HF of the dimension
relations. Later, in [15], the authors introduced an improved version of their approach
presented in [14].

A technique established on frequent itemset mining was proposed in [16] towards
partition, bucket, and sort tables (PBSTs) into a big DW with the more common predicate
attributes in the workload. This method considered the quantity of the relation attributes,
data skew, and the physical features of the cluster nodes. The authors employed a hash-
partitioning approach, which horizontally splits all the tables of a big relational DW,
utilizing workload-based PBST methods.

Parchas et al. [17] focused on the “Dist-Key” which is a horizontal partitioning type
widely used in DW systems on the market. This kind of horizontal partitioning divides the
tuples of a table by using a hash function on the values of a particular attribute identified as
the distribution key. Consequently, the proposed strategy tries to reduce the query network
cost by choosing the optimal attribute to hash-distribute every DW relation. They suggested
BaW (best of all worlds), a mixed method that merges heuristic and exact techniques to
select the best distribution key in favor of some tables.

Nevertheless, Barkhoradari and Niamanesh [18] developed a technique called Chabok
that involves a two-phase Map–Reduce to resolve DW issues incorporating big data.
Chabok is utilized in repositories with the star schema and allows the calculation of
distributive measures. This approach deals efficiently with big dimensions; in these dimen-
sions, data size is larger than the bulk of a node. Chabok partitions horizontally the fact
table. The Fact Mapper nodes store an identical quantity of tuples in the case of similar
nodes. Hadoop and the TPC-DS benchmark were utilized to implement Chabok. The query
response time on Chabok overcame significant big data tools for data warehousing, such as
Hive and Spark-SQL.

Another approach based on affinity is [19], where the authors considered the hor-
izontal fragmentation of the DW through a simplified decision problem that takes into
account the fragmentation derived from the fact table according to the partitioning scheme
of a dimension table making use of solely one attribute. The corresponding optimization
problem involves calculating a fact table partitioning by limiting the number of fragments
by a constant B (quantity of fragments established by the DW administrator) and mini-
mizing the number of I/O operations. A hill-climbing method was developed to choose a
near-optimal solution for selecting an optimal fragmentation scheme in a relational DW.
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The hill-climbing algorithm has two steps: (1) it finds an initial HFS using an affinity
algorithm, and (2) it iteratively improves the initial solution to minimize query execution
cost and satisfy B.

Likewise, the problem of selecting an HFS that is supported by the ant-colony-based
approach was modeled in [20]; the variables were: the non-fragmented DW scheme, the
workload commonly executed, and the largest quantity of partitions necessary for the DW
administrator. The HFS that minimizes the total cost of request loading is the resulting
output. The approach taken was based on cost.

In [9,21], all the DW tables were fragmented into several buckets (NB) using a hash-
partitioning approach and then they were distributed evenly among the cluster nodes
to optimize star join queries. The buckets were built in three stages: (1) finding out the
near-best NB and the partitioning key by employing the balanced k-means algorithm;
(2) obtaining the fact table buckets; and (3) building dimension buckets.

Ettaoufik and Ouzzif [22] implemented an assisted incremental horizontal fragmenta-
tion technique with temporary materialized views by a web service. This approach has
its basis in managing temporary materialized views for optimizing frequent new queries
before proceeding with the fragmentation implementation. The authors used a web service
to automatically monitor and improve DW performance and reduce both manual efforts
and implementation costs. The web service selects and implements the HFS, and then
monitors the performance of the DW to avoid any degradation.

However, to adjust decision-making systems with big data management, in [23], the
authors proposed the merger of NoSQL graph-oriented data into the DW; the work details
a new method named Big Parallel-ETL which has the aim of adjusting the traditional ETL
process (extract–transform–load) through big data tools to speed up data manipulation
with the basis of the well-known MapReduce concept distinguished by its suitable parallel-
processing feature. The system architecture is comprised of two main layers; one of them
has the data sources of the system (Neo4j) and the other layer is comprised of the ETL
process that works with the MapReduce paradigm. The main idea of the work consists
of operating on a JSON file containing Neo4j data mixed with DW metadata to arrange
the multidimensional schema utilizing the MapReduce paradigm beginning with the
horizontal partitioning operation and then transforming the sub-JSON files into column-
oriented tables to obtain the corresponding multidimensional layout to be unified into the
target DW.

Likewise, Munerman et al. [24] proposed an allocation approach of “objects” to “stor-
ages” where the nature of the former is defined by the subject area. Later, they considered
the speed up of the join operation while processing big data in a specific area. To decrease
the execution time of this activity, it is required to optimally distribute the operand tables.
Therefore, parallel implementation of the join execution needs an equal data distribution
among the DW processors in the cluster. To efficiently resolve the optimal big data distribu-
tion, the authors formalized a heuristic method with polynomial computational complexity
presenting the objective function and the system of restrictions. The study of the established
technique considering different data bulks and diverse data warehouses was realized. A
report of the experiments to validate the heuristic greedy optimal distribution proposal was
given. The executing time of the approach, even considering massive data, is brief; thus,
it can be efficiently applied to distribute data for parallel resolving issues with enormous
computational complexity.

On the other hand, [25] established that improving OLAP query efficiency in a dis-
tributed system of the kind of Hadoop and Spark is a challenge since the star join operation
is the most costly operation involved in these queries and the one requiring significant
communication cost. A popular technique that reduces the network flow of the star join
operation is to co-partition several DW relations on their join key. Nevertheless, this op-
eration still needs multiple MapReduce cycles in established DW partitioning schemes.
For that, the authors proposed two approaches called “FKey” and “NewKey” which have
their basis in a data-mining technique to lead their physical design. The partitioning and
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distribution scheme assists the query optimizer to obtain a significant query-processing
plan, to perform the star join execution in one Spark phase minus the shuffle stage. The
authors performed experiments on a computer cluster to evaluate their approach using the
TPC-DS benchmark.

Finally, Ramdane et al. [26] proposed a dynamic method to optimize group-by opera-
tion. This proposal applies partitioning and bucketing approaches to distribute a big DW
among the nodes of a Hadoop cluster. This new schema aids the system omit accessing
irrelevant data blocks, executes a star join operation in a single Spark phase excluding a
shuffle stage, and accelerates group-by aggregation. Experimental findings demonstrated
that the technique overcomes related methods considering OLAP query response time.

Table 1 establishes the main characteristics of each horizontal fragmentation method
described before. Although several DW fragmentation methods are based on data mining,
they use clustering or association techniques. This paper introduces a horizontal fragmenta-
tion technique, called FTree, which uses decision trees to select the horizontal fragmentation
scheme of data warehouses.

Table 1. Main characteristics of horizontal fragmentation methods.

Work Classification Validation

[9] Data mining (clustering) TPC-DS benchmark employing Scala language applied in a cluster of
similar nodes, a Hadoop-YARN platform, a Spark engine, and Hive.

[12] Metaheuristic APB-1 benchmark.
[13] Minterm predicates TPC-H benchmark.
[14] Cost APB-1 benchmark.
[15] Cost SSB (star schema benchmark).
[16] Data mining (association) TPC-DS benchmark.

[17] Graph
Real1 and Real2 join graphs randomly extracted from real-life guests of
Redshift with different volumes and frequencies as well as the
TPC-DS benchmark.

[18] Other (Map–Reduce) TPC-DS benchmark.
[19] Affinity APB-1 benchmark.
[20] Cost APB-1 benchmark.
[21] Data mining (clustering) TPC-DS benchmark.
[22] Cost APB-1 benchmark.
[23] Other (Map–Reduce) JSON file which contains Neo4j vast data combined with DW metadata.

[24] Metaheuristic
Experiments in a workstation to identify dependencies such as the
execution time of the method compared to the number of data
warehouses and the distribution quality.

[25] Data mining (clustering) Experiments on a computer cluster utilizing the TPC-DS benchmark.

[26] Partitioning (hash)
Experiments with the TPC-DS benchmark through a cluster of
homogeneous nodes, a Spark engine, a Hadoop-YARN platform, a Hive
system, a Ray system, and a Redis database.

3. Materials and Methods

This section introduces the FTree method. First, its four steps are explained. Then, the
web application to apply FTree in a DW and the elements of its schema are detailed.

3.1. FTree Method

FTree has four steps, as depicted in Figure 1. It takes as the input the DW to be
horizontally fragmented and W, i.e., the upper limit of partitions required by the DW
administrator (DWA).
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To explain FTree, we use the SSB (star schema benchmark) [27]; this is demonstrated
in Table 2. The SSB consists of a data warehouse with the lineorder fact table as well as the
customer, supplier, part, and date dimension tables.

Table 2. Queries executed in SSB.

Query Frequency

q1: SELECT d_month, sum(lo_quantity) from date, lineorder WHERE d_datekey=lo_orderdate AND
d_year=1992 GROUP BY d_month; 3

q2: SELECT d_month, sum(lo_quantity) FROM date, lineorder WHERE d_datekey=lo_orderdate AND
d_year=1992 AND d_sellingseason=‘Summer’ GROUP BY d_month; 5

q3: SELECT d_month, avg(lo_ordtotalprice) from date, lineorder WHERE d_datekey=lo_orderdate AND
d_year=1993 GROUP BY d_month; 4

q4: SELECT d_month, avg(lo_ordtotalprice) FROM date, lineorder WHERE d_datekey=lo_orderdate
AND d_year=1993 AND d_sellingseason=‘Christmas’ GROUP BY d_month; 3

q5: SELECT d_year, sum(lo_quantity) FROM date, lineorder WHERE d_datekey=lo_orderdate AND
d_month=‘January’ GROUP BY d_year; 3

q6: SELECT d_month, sum(lo_revenue) FROM lineorder, date WHERE d_datekey=lo_orderdate and
d_year=1995 GROUP BY d_month; 2

q7: SELECT d_year, sum(lo_quantity) FROM date, lineorder WHERE d_datekey=lo_orderdate AND
d_sellingseason=‘Winter’ GROUP BY d_year; 5

q8: SELECT sum(lo_revenue), d_year, p_brand1 FROM lineorder, date, part, supplier WHERE
lo_orderdate=d_datekey AND lo_partkey=p_partkey AND lo_suppkey=s_suppkey AND
p_category=‘MFGR#12′ AND s_region=‘AMERICA’ GROUP BY d_year, p_brand1 ORDER BY d_year,
p_brand1;

2

q9: SELECT sum(lo_revenue), d_year, p_brand1 FROM lineorder, date, part, supplier WHERE
lo_orderdate=d_datekey AND lo_partkey=p_partkey AND lo_suppkey=s_suppkey AND
p_brand1=‘MFGR#2221′ AND s_region=‘EUROPE’ GROUP BY d_year, p_brand1 ORDER BY d_year,
p_brand1;

2

The data warehouse (DW) is made up of several dimension tables D = {d1, d2, . . . , dm}
and a fact table F. To carry out the fragmentation, the following steps are performed:

1. Obtain relevant queries from DW. For this step, it is necessary to keep only the
queries performed in the DW that imply joins of a dimension table di with F; every di-
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mension table di will have a set of queries Qi = {qi1, qi2, . . . , qin}. Additionally, the fre-
quency of queries Fi = {fi1, fi2, . . . , fin} is obtained, each query qij has a set of predicates
Prij = {pij1, pij2, . . . , pijr}, and finally, the selectivity of predicates Sij = {selij1, selij2, . . . , selijr}
is required. The relevant queries presented in Table 2 are considered. Table 3 depicts the
predicates used by the queries and their selectivity.

Table 3. Predicates used by the queries.

Pr Description S

p1 d_year = 1992 sel1 = 907,987
p2 d_sellingseason = ’Summer’ sel2 = 2,076,040
p3 d_year = 1993 sel3 = 908,288
p4 d_sellingseason = ’Christmas’ sel4 = 912,008
p5 Dumont = ’January’ sel5 = 541,483
p6 d_year = 1995 sel6 = 909,991
p7 d_sellingseason = ‘Winter ‘ sel7 = 1,577,160
p8 p_category = ‘MFGR#12′ sel8 = 236,816
p9 s_region = ‘AMERICA” sel9 = 1,134,371
p10 p_brand1 = ‘MFGR#2221′, sel10 = 5848
p11 s_region = ‘EUROPE’ sel11 = 1,140,311

2. Select the best dimension. The most important dimension is selected in this step.
Equation (1) is used to calculate the importance of each dimension, where n is the number
of queries executed against the dimension di and r is the number of predicates for the
dimension di involved in each query. For this, the query frequency is multiplied by the
selectivity of its predicates. The selected table is called dim. Table 4 shows the importance
of dimensions for the scenario. For example, the importance of dimension part is 485,328
because we multiply f 8 ∗ sel8 + f 9 ∗ sel10 = 2 ∗ 236,816 + 2 ∗ 5848.

Ii =
n

∑
j=1

fij(
r

∑
k=1

selijk) (1)

Table 4. Dimension importance for the scenario.

Dimension Importance

date 38,076,239
supplier 4,549,634

part 485,328

3. Build data sets. This step consists of building W − 1 data sets used to train
the J48 algorithm to select the best horizontal fragmentation scheme (HFS). J48 was used
because it obtained better performance than other decision tree algorithms according to [28],
where it was demonstrated that J48 built decision trees with better results considering
four evaluation metrics: precision, recall, F-measure, and ROC area. Algorithm 1 shows
the steps to build the data sets. According to lines 1–3, it receives as an input W and
a predicate usage matrix (PUM) of the queries executed in both the fact table and dim.
Table 5 shows the PUM for the example. The data sets in ARFF (attribute-relation file
format) are the output of Algorithm 1 (line 4). In line 5, c is set to two because this is the
minimum number of fragments of the scheme. Then, a partition tree (PT) is generated [29],
where initially, every predicate is considered to be in a single partition (see Table 6, where
each column corresponds to a fragment and the * indicates an empty partition); from
step 1 to step r − 1, where r is the number of predicates of dim, a merging profit matrix
(MPM) is obtained (lines 6 and 7), which measures the benefit obtained by merging a pair
of predicates. When a pair of predicates is merged, the number of remote tuples accessed
is reduced, as some queries that previously required tuples from multiple fragments will
now only need to access one fragment. For example, the PUM of Table 5 shows that the
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query q2 uses the predicates p1 and p2; when they are combined in a partition in the second
step of the PT depicted in Table 6, q2 only accesses one fragment, while the number of
irrelevant tuples retrieved is increased because some queries will now have to retrieve
all tuples from the new fragment even if they only require those from one of the merged
fragments. For example, in Table 5, the query q1 only needs the tuples that satisfy the
predicate p1, but when the two predicates (p1 and p2) are merged, it also has to access
the tuples from predicate p2. The MPM is obtained as in [30], which takes the PUM as
the input and calculates the decreased volume of remote tuples retrieved (DRT) and the
increased number of irrelevant tuples obtained (IIT). The merging benefit of two predicates
will be equal to the difference between DRT and IIT. The predicate pair with the highest
merging profit will be merged (lines 8–9). When step r-(W-c) is reached (line 10), the first
data set (data_setc) is obtained (line 11). With each merger, a new data set will be generated
with one more fragment (line 12), until finding the last data set consisting of W minus one,
because the last fragment would be the complement. In the example, W = 4; then, data_set2
and data_set3 were obtained for steps 6 and 5, respectively. Figure 2 shows data_set2.arff,
which is one of the data sets obtained as a result of Algorithm 1. This data set includes the
workload given as input to J48 to build the decision tree.

Algorithm 1. Generate data sets.

1 Data: PUM of the fact table F and dim (a set of queries Q = {q1, q2, . . . , qn},
2 the frequency fi of every query qi, a set of predicates Pr = {p1, p2, . . . , pr}, the
3 selectivity selj of every predicate pj), W
4 Result: data sets D = {data_set2, data_set3, . . . , data_setw−1}
5 c = 2
6 for each stepi ∈ PT | 1 ≤ i ≤ r − 1 do
7 getMPM(PUM, MPM);
8 choose two fragments with the greatest merging profit;
9 fuse the fragments;
10 if i > r-(W-c)
11 generate data_setc
12 c = c + 1;
13 end;
14 end;

Table 5. Predicate Usage Matrix for the scenario.

Q/Pr p1 p2 p3 p4 p5 p6 p7 Fi

q1 1 0 0 0 0 0 0 3
q2 1 1 0 0 0 0 0 5
q3 0 0 1 0 0 0 0 4
q4 0 0 1 1 0 0 0 3
q5 0 0 0 0 1 0 0 3
q6 0 0 0 0 0 1 0 2
q7 0 0 0 0 0 0 1 5
selj 907,987 2,076,040 908,288 912,008 541,483 913,927 1,577,160

Table 6. Partition Tree for the scenario.

Step Predicates
1 p1 p2 p3 p4 p5 p6 p7
2 p1, p2 * p3 p4 p5 p6 p7
3 p1, p2 * p3, p4 * p5 p6 p7
4 p1, p2 * p3, p4 * p5, p6 * p7
5 p1, p2 * p3, p4 * p5, p6, p7 * *
6 p1, p2, p3, p4 * * * p5, p6, p7 * *
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Figure 2. Data set for step 6 of the PT.

Figure 2 shows that the instances of the data set represent the queries and the attributes
correspond to the predicates; a numeric variable is added for each attribute involved in
the predicates. Additionally, the query frequency is considered in the data sets. The class
label attribute is fragment; the value for this attribute is assigned according to the partition
tree and when a query uses predicates located in different fragments, the selectivity is
considered. For example, according to Table 5, q4 uses the predicates p3 and p4. The
selectivity of these predicates is sel3 = 908,288 and sel4 = 912,008. In the second step of the
partition tree of Table 6, they are in different fragments; p3 is in the second fragment (F2)
and p4 is in the third one (F3). Therefore, the label F3 is assigned to q4, because sel4 > sel3.

4. Apply J48 to data sets. The Weka API (application program interface) is used to
apply the J48 algorithm to the W-1 data sets. The data set with the best results achieved
for four performance metrics (precision, recall, F-measure, and ROC area) will be chosen.
Table 7 shows the best HFS of the example, i.e., data_set2. We used 5-fold cross-validation.
Figure 3 depicts the decision tree for data_set2. Therefore, the fragmentation scheme is
fr1 = {p1, p2, p3, p4}, fr2 = {p5, p6, p7}, fr3 = { ¬ (p1, p2, p3, p4), ¬ (p5, p6, p7)}.

Table 7. Comparative table of fragmentation schemes.

Scheme Precision Recall F-Measure ROC Area

data_set2 0.286 0.429 0.343 0.208
data_set3 - 0.429 - 0.244
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3.2. FTree Web Application

We also developed a web application using the Java programming language, the API
of Weka, and the database management system (DBMS) PostgreSQL to apply FTree in a
DW. First, the DWA must provide the IP of the server where the data warehouse is located,
the port, as well as his/her username and password. Then, the DW to be fragmented and
the fact table are selected and the upper limit of partitions is entered (W). When these data
are provided and the fragmentation proceeds, the FTree schema of Figure 4 is created in the
DW. Table 8 describes every element of this schema. Figure 6 shows a partition tree in the
web application, while Figure 8 depicts a PUM, Figure 10 presents the comparative table of
two fragmentation schemes, and Figure 3 exhibits a decision tree in the web application.
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Table 8. Elements of the FTree schema created in the DW.

Name Type Description

postgres_log Table It stores all the queries found in the log file.

current_database Trigger Before inserting a query into the postgres_log table, it verifies that only the relevant
queries were saved.

copy_log() Function It copies the contents of the current day’s transaction log to the postgres_log table.
queries Table It stores the identifier, the description, and the frequency of the queries.
delete_queries Trigger After removing a query on the queries table, it reduces the value of the identifier by 1.

insert_queries Trigger Before inserting a query into the queries table, if the query is already stored in this
table, then it is not inserted and its frequency is increased by 1.

ai_queries Trigger After inserting a query into the queries table, it updates its identifier if it is bigger
than the number of tuples.

statistic_collector(text) Function It analyzes the queries stored in postgres_log to insert into the table queries only those
executed in the table to be fragmented. Its parameter is the fact table.

attributes View It stores the names of the dimensions as well as the attributes of each dimension and
the order in which they appear in the dimension table.

attribute Table It saves the data from the attributes view and adds a global order attribute.

fact_attributes View It stores the name of the fact table as well as the names and order of each of its
attributes.

predicates Table It saves the identifier, description, and selectivity of the predicates, as well as their
dimensions and order in that dimension.

insert_predicates Trigger Before inserting predicates into the table, it analyzes that only those from queries
involving the fact table with the dimension table are taken.

insert_predicates2 Trigger Before a predicate is inserted into the table, it validates that only different predicates
are recorded.

ai_predicates Trigger After inserting a predicate into the predicates table, it updates its identifier if it is
greater than the maximum number of rows.

delete_predicates Trigger After removing a predicate in the predicates table, it reduces the value of the
identifier by 1.

get_predicates() Function It obtains the predicates of the queries stored in queries and stores them in the
predicates table.

query_predicate Table It saves the relationship between queries and predicates.

delete_query_predicate Trigger After deleting from the query_predicate table, it sets to 1 the sequences for queries
and predicates.

predicate_usage_table Table It stores the PUM that Algorithm 1 takes as input.
data_set Table It contains the data_set obtained by Algorithm 1.

query_pred() Function It analyzes which predicates appear in which queries and keeps this relation in
query_predicate.

get_dataset() Function It creates the data sets that are used to build the decision tree.
importance_dimension View It stores the importance of the dimensions.
ds_attributes View The attributes of the data set table and their order are in this view.
primary_keys View It stores the name and the attributes of primary keys for all the DW tables.

foreign_keys View The name of the foreign keys for each dimension and the attribute in the fact table
involved in this constraint are in this view.

In the following section, we compare the horizontal fragmentation schemes obtained
by FTree with J48 versus FTree with other classification techniques such as naïve Bayes and
multilayer perceptron. These algorithms were used in the comparison analysis because
they are two classification techniques widely known for their effectiveness [31,32].

Naïve Bayes is a classification algorithm that applies the probability theory to indicate
the relationship among variables and class labels; this model is one of the easiest and most
known probabilistic classification models. Naïve Bayes realizes a simplifying supposition
concerning the class-conditional probabilities, understood as naïve Bayes presumption;
using this, it is possible to obtain confident estimates of class-conditional probabilities, still
with a large number of attributes [33].

A multilayer perceptron is a kind of artificial neural network (ANN) and is considered
a powerful classification approach that can find considerably complex and nonlinear
decision boundaries purely coming from the data. In a multilayer perceptron, the basic
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concept of a perceptron is generalized to more elaborated architectures of nodes that can
learn nonlinear decision boundaries [33]. In the next section, the main findings of the
evaluation of FTree are presented.

4. Results and Discussion

This section includes the findings obtained with FTree using a real DW and the
comparison of FTree with J48 versus other classifiers using a cost model.

4.1. Description of the Second Scenario: Tourist Data Warehouse

To evaluate FTree with real data, a tourist DW was built following the methodology
proposed by [34]. We used information from the main organizations that regulate tourist
activity in Mexico: SECTUR (Secretaría de Turismo), SEGOB (Secretaría de Gobernación),
UWTO (United Nations World Tourism Organization), and INEGI (Instituto Nacional de
Estadística y Geografía). The type of multidimensional scheme to be used in this case
corresponds to a constellation of facts. Under PostgreSQL selected as the DBMS and
Pentaho as the ETL (extraction/transformation/loading) tool, dimensional modeling of the
touristic DW was carried out, which can be seen in Figure 5. Table 9 shows that the DW
has two fact tables (Hotel_activity and International_visitors) and four dimensions (Location,
Time, Tourism, and Tourist).
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Table 9. Tables of a tourist DW.

Name Type Attributes Tuples

Hotel_activity Facts 8 35,424
Internationals_visitors Facts 5 576

Location Dimension 4 123
Time Dimension 4 144

Tourism Dimension 3 4
Tourist Dimension 2 2

4.2. Application of FTree in the Tourist Data Warehouse

FTree was applied and tested in the tourist DW. The fact table fragmented was Ho-
tel_activity. We performed the first experiment using the predicate use matrix (PUM) of
Table 10.
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Table 10. Predicate usage matrix for the first experiment.

Q/Pr p1 p2 p3 p4 p5 p6 p7 Fi

q1 1 1 1 0 0 0 0 20
q2 1 0 0 1 0 0 0 15
q3 1 0 0 0 1 0 0 15
q4 0 1 0 0 0 1 0 35
q5 0 1 1 0 0 0 0 35
q6 1 0 0 0 0 0 1 30
q7 0 0 0 1 0 0 0 10
q8 0 0 0 0 0 0 1 10
q9 0 0 0 0 1 0 0 10
q10 0 0 1 0 0 0 0 10
selj 2952 8856 2952 2952 2952 2952 2952

In this case, the upper limit of partitions (W) allowed by the DWA is 4. The pred-
icates considered are presented in Table 11. Using the PUM of Table 10, the partition
tree of Figure 6 was obtained by FTree (every column represents a fragment and the *
indicates an empty partition). Table 12 depicts the comparison between data_set2 with
fragments fr1 = {p1, p4, p5, p7}, fr2 = {p2, p3, p6} and data_set3 with fragments fr1 = {p1, p4, p7},
fr2 = {p2, p3, p6}, fr3 = {p5}. We used 8-fold cross-validation. The best scheme is data_set2.
The decision tree obtained by FTree is visualized in Figure 7.

Table 11. Predicates for the first experiment.

Pr Pr
Text

p1 month = ‘feb’
p2 quarter = ‘T3′

p3 year = 2018
p4 year = 2014
p5 year = 2017
p6 year = 2015
p7 year = 2016
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Figure 7. Decision tree for 2 fragments found by FTree for the first experiment.

Other classification algorithms were used to select the fragmentation scheme. Table 12
presents the results of the evaluation metrics precision (P), recall (R), F-measure (F), and
ROC area (ROC) with naïve Bayes and multilayer perceptron with one hidden layer with
six units, sigmoid activation function, learning rate = 0.3, momentum = 0.2, and number of
epochs = 500.

Table 12. Comparison of the two schemes with J48, Naïve Bayes, and Multi-layer Perceptron.

Scheme J48 Naïve Bayes Multi-Layer Perceptron
P R F-M ROC P R F-M ROC P R F-M ROC

data_set2 0.925 0.900 0.903 0.881 0.925 0.900 0.903 0.952 0.880 0.800 0.808 0.857
data_set3 - 0.600 - 0.439 - 0.800 - 0.774 0.750 0.600 0.650 0.694

As seen in Table 12, all the algorithms agree that the two-fragment scheme is the most
suitable. In addition, the model obtained by FTree (Figure 7) is easier to interpret, which
allows the fragmentation of the data warehouse based on the attribute frequency.

We performed a second experiment. Table 13 presents the OLAP queries executed in
the tourist DW. The PUM for this workload is shown in Figure 8.

Table 13. OLAP queries executed in the tourist DW in the second experiment.

Query Frequency

q1: SELECT month, sum(booked_rooms) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2007 GROUP BY month; 3

q2: SELECT month, sum(booked_rooms) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2008 GROUP BY month; 4

q3: SELECT month, sum(booked_rooms) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.quarter=‘T1′ GROUP BY month; 2

q4: SELECT month, sum(tourist_night) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2009 GROUP BY month; 5

q5: SELECT quarter, sum(tourist_night) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2010 GROUP BY quarter; 2

q6: SELECT year, sum(tourist_night) FROM time, hotel_activity WHERE time.id_time=hotel_activity.id_time
AND time.quarter=‘T2′ group by year; 3

q7: SELECT month, sum(tourist_arrivals) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2011 group by month; 4

q8: SELECT year, sum(tourist_arrivals) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.month=‘dic’ group by year; 7

q9: SELECT quarter, sum(tourist_arrivals) FROM time, hotel_activity WHERE
time.id_time=hotel_activity.id_time AND time.year=2012 group by quarter; 4
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Table 13. Cont.

Query Frequency

q10: SELECT year, avg(stays) FROM time, hotel_activity WHERE time.id_time=hotel_activity.id_time AND
time.month=‘jul’ group by year; 10

q11: SELECT quarter, avg(stays) FROM time, hotel_activity WHERE time.id_time=hotel_activity.id_time AND
time.year=2013 group by quarter; 3

q12: SELECT month, avg(stays) FROM time, hotel_activity WHERE time.id_time=hotel_activity.id_time AND
time.year=2013 AND time.quarter=‘T4′ group by month; 4
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The partition tree for this experiment is shown in Figure 9 (each column represents
a fragment, the * indicates an empty partition). In this case, W = 4; therefore, two data
sets were obtained. Figure 10 compares the performance of these data sets using 10-fold
cross-validation. Figure 11 displays the decision tree for the best fragmentation scheme. It
has two fragments fr1 = {p1, p2, p5, p7, p8, p10}, fr2 = {p3, p4, p6, p9, p11, p12}.
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Other classification techniques were used to select the fragmentation scheme. Table 14
presents the results of the evaluation metrics with naïve Bayes and multilayer perceptron
with one hidden layer with six units, sigmoid activation function, learning rate = 0.3,
momentum = 0.2, and number of epochs = 500.

Table 14. Comparison of the two schemes with Naïve Bayes and Multi-layer Perceptron.

Scheme
Naïve Bayes Multi-Layer Perceptron

Precision Recall F-Measure ROC Area Precision Recall F-Measure ROC Area

data_set2 0.800 0.667 0.625 0.708 0.688 0.667 0.657 0.694
data_set3 0.857 0.750 0.742 0.750 0.563 0.583 0.570 0.733

The multilayer perceptron selected the same fragmentation scheme as FTree, while
naïve Bayes chose the scheme with three fragments. We compared the schemes using a cost
model where the cost of a decision support query qi is given by the irrelevant tuple cost
(ITC) and the relevant tuple cost (RTC), as shown in Equation (2).

Cost(qi) = ITC(qi) + RTC(qi) (2)

The amount of irrelevant data accessed from a query is calculated by multiplying
the number of irrelevant tuples accessed by the query in every fragment frk by the query
frequency (fi). Equation (3) is used to obtain ITC where card(frk) is the cardinality of the
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fragment frk, selj is the selectivity of the predicate pj, and rtj is the number of tuples from
the predicate pj located in other fragments required to answer the query.

ITC(qi) =
m

∑
k=1

(card( f rk)− ∑
pj |PUM(qi ,pj)=1∧pj∈ f rk

(selj − rtj)) ∗ fi (3)

The amount of relevant data located in other fragments is obtained by Equation (4),
where the number of relevant tuples located in other fragments is multiplied by the fre-
quency of the query squared and by the number of fragments (nfi) required to answer
the query.

RTC(qi) = ∑n
pj |PUM(qi , pj)=1∧rtj>0rtj ∗ f 2

i ∗ n fi (4)

Table 15 shows the cost of the queries in both fragmentation schemes, the one selected
by FTree with J48 and the multilayer perceptron, and the scheme chosen by naïve Bayes.
In the case of the first scheme, the cardinalities of the fragments are card(fr1) = 15,744,
card(fr2) = 17,220, and card(fr3) = 2460. The third fragment is the complement. The ITC of
q3 is calculated as follows:

ITC(q3) = (card( f r2)− (sel3 − rt3)) ∗ f3= (17, 220− (8856− 2952)) ∗ 2 = 22, 632

The RTC of the same query is obtained as shown below:

RTC(q3) = rt3 ∗ f 2
3 ∗ n f3 = 2952 ∗ 22 ∗ 2 = 23, 616.

For the scheme chosen by naïve Bayes, the cardinalities of the fragments are
card(fr1) = 15,744, card(fr2) = 11,808, card(fr3) = 5412, and card(fr4) = 2460. The fourth frag-
ment is the complement. Therefore, the costs of the third query in this scheme are:

ITC(q3) = (card( f r2)− (sel3 − rt3)) ∗ f3 = (11, 808− (8856− 2952)) ∗ 2 = 11, 808.
RTC(q3) = rt3 ∗ f 2

3 ∗ n f3 = 2952 ∗ 22 ∗ 2 = 23, 616.

Table 15. Query cost comparison of the fragmentation schemes.

Query HFS of data_set2 HFS of data_set3
ITC RTC Cost ITC RTC Cost

q1 38,376 0 38,376 38,376 0 38,376
q2 51,168 0 51,168 51,168 0 51,168
q3 22,632 23,616 46,248 11,808 23,616 35,424
q4 73,800 24,600 98,400 22,140 147,600 169,740
q5 25,584 0 25,584 25,584 0 25,584
q6 33,948 53,136 87,084 17,712 53,136 70,848
q7 51,168 0 51,168 51,168 0 51,168
q8 89,544 0 89,544 89,544 0 89,544
q9 59,040 15,744 74,784 17,712 94,464 112,176
q10 127,920 0 127,920 127,920 0 127,920
q11 44,280 8856 53,136 13,284 53,136 66,420
q12 43,296 173,184 216,480 1968 330,624 332,592

Table 15 shows that the HFS selected by FTree with J48 and the multilayer perceptron
is better in most cases. In only two queries, the HFS chosen by naïve Bayes obtained a
lower query execution cost. Additionally, the decision tree generated by J48 is easier to
interpret than the model of the multilayer perceptron. Therefore, the model obtained by
J48 outperformed those of naive Bayes and the multilayer perceptron.

Additionally, to evaluate FTree, it was compared with [14]; for this, the predicate use
matrix of Table 16 taken from [14] was used.
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Table 16. Predicate use matrix for the third experiment.

Q/P p1 p2 p3 p4 p5 p6 p7 Fi

q1 0 1 0 0 1 0 1 20
q2 1 1 0 0 0 1 0 15
q3 0 0 1 0 1 0 1 20
q4 0 1 0 1 0 1 0 15
q5 0 0 1 0 1 0 1 15
q6 1 0 0 1 0 1 1 10
q7 0 1 0 1 0 1 0 15
selj 30 50 80 65 20 35 40

The best fragmentation scheme according to [14] is that of the three fragments
fr1 = {p1, p2, p3, p4, p5}, fr2 = {p6}, and fr3 = {p7}. With FTree, in this case, the maximum num-
ber of fragments allowed by the data warehouse manager (W) is four. Using the PUM, the
partition tree generated by FTree was obtained. Figure 12 shows the comparison between
data_set2 with the fragments fr1 = {p1, p2, p4, p6}, fr2 = {p3, p5, p7}, and data_set3 with the
fragments fr1 = {p1, p2, p4}, fr2 = {p3, p5, p7}, fr3 = {p6}. We used 8-fold cross-validation. The
best scheme is data_set2. The decision tree obtained with FTree is visualized in Figure 13.
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Table 17 shows the cost of the queries in two fragmentation schemes, that obtained
by [14] and that of FTree. In the case of the schema generated by FTree, the cardinalities
of the first and second fragments are card(fr1) = 180 and card(fr2) = 140. For the scheme
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produced by [14], the cardinalities of the fragments are card(fr1) = 245, card(fr2) = 35, and
card(fr3) = 40.

Table 17. Comparison of query costs for the two fragmentation schemes.

Query FTree Kechar & Nait-Bahloul [14]
ITC RTC Cost ITC RTC Cost

q1 4200 0 4200 3500 0 3500
q2 975 0 975 2475 0 2475
q3 0 0 0 2900 0 2900
q4 450 0 450 1950 0 1950
q5 0 0 0 2175 0 2175
q6 1500 0 1500 1500 0 1500
q7 450 0 450 1950 0 1950

As can be seen in Table 17, although both fragmentation methods obtained schemes
without RTC, the scheme generated by FTree had lower ITC in most cases. Only the first
query was more efficient in the scheme found by [14]. These experiments demonstrated the
effectiveness of FTree.

5. Conclusions and Future Work

Technological advances have made it possible to collect large amounts of data in
different fields; therefore, there is a constant need to develop tools that help the process of
extracting precise information from the enormous volume of data that are converted into
knowledge. The DWs have proven to be efficient for the analysis of these massive data;
for this reason, they are an excellent option to be implemented in the monitoring of tourist
activity, in which, to stay at a competitive level, it is necessary to know the client preferences.
As mentioned throughout this article, DW fragmentation achieves optimized response time
and execution costs of OLAP queries. Several techniques for both vertical and horizontal
fragmentation have been developed; however, to the best of our knowledge, a decision
tree has not been used to fragment the DW, which represents an unexplored area within
DW research. In this work, the classification capability of decision trees is exploited to use
them in DW horizontal fragmentation. A horizontal fragmentation method, called FTree,
has been developed that uses decision trees to obtain fragmentation schemes that achieve
the optimization of OLAP queries in a DW. FTree was applied in a tourist DW, taking
advantage of a large amount of data available in this area. The results will benefit both
designers and users of data warehouses as well as researchers from the computational area.

In the future, we will extend FTree to provide dynamic fragmentation of data ware-
houses, monitoring the access patterns of the DW to detect when to modify the horizontal
fragmentation scheme to avoid the reduction in query performance. Additionally, the
fragmentation of data lakes will be considered.
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