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Abstract: Appropriate teaching–learning strategies lead to student engagement during learning
activities. Scientific progress and modern technology have made it possible to measure engagement
in educational settings by reading and analyzing student physiological signals through sensors
attached to wearables. This work is a review of current student engagement detection initiatives in
the educational domain. The review highlights existing commercial and non-commercial wearables
for student engagement monitoring and identifies key physiological signals involved in engagement
detection. Our findings reveal that common physiological signals used to measure student engage-
ment include heart rate, skin temperature, respiratory rate, oxygen saturation, blood pressure, and
electrocardiogram (ECG) data. Similarly, stress and surprise are key features of student engagement.

Keywords: engagement detection; learning environments; physiological signals; sensors; wearables

1. Introduction

Student engagement in the classroom is usually directly linked to the student’s percep-
tion of the pedagogical activities and strategies implemented in class. Student engagement
is usually measured when teaching reading comprehension. In many cases, reading is
a fundamental building block to students’ development and success both in and out of
the classroom. It strengthens the brain and promotes critical thinking. Similarly, reading
comprehension as a skill allows students to interpret written discourse. However, teaching
reading comprehension may be a challenging task when it comes to keeping students
fully engaged.

In their work, Bosch et al. [1] identified three types of student engagement: affective,
behavioral, and cognitive. Current methods for monitoring engagement levels among
students during educational activities usually rely on computer vision for image processing
and recognition of facial expressions, gestures, postures, and eye movements. Similarly,
physiological and neurological sensors attached to wearables can capture key physiological
features as indicators of student engagement.

The computer vision approach allows researchers to extract valuable data on the
affective, cognitive, and behavioral states of students during specific learning activities
and from three channels: audio, image, and video. The data obtained from computer
vision allow experts to monitor and measure to what extent students remain engaged in a
particular classroom activity, initially designed to teach something. In parallel, the use of
wearables in learning environments allows for detecting data of factors involved during
learning experiences, such as concentration, engagement, and attitude to name but a few,
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through the monitoring of physiological signals. Such data is key for teachers, as it allows
them to understand why students perform in a certain way in class.

A substantial amount of scientific literature includes reviews or proposes sensors and
biosensors to measure physiological variables. Castaneda et al. [2], Shabaan et al. [3], Lou
et al. [4], Guo et al. [5] and Tandon et al. [6] developed their own sensors and wearable
technologies for monitoring of different physiological signals. Nahavandi et al. [7] analyzed
the challenges and opportunities of Artificial Intelligence (AI)-based wearable devices. In
turn, researchers Reda et al. [8], Surantha et al. [9], Khoshmanesh et al. [10], Santo et al. [11],
Akinosun et al. [12], DeVore et al. [13] and Burnham et al. [14] have introduced their own
reviews of wearables applied to healthcare. In this perspective, some parameters used in
these works are relevant for engagement in students, such as heart rate, blood pressure,
postures, sleep, to mention but a few. Other researchers [15–19] have proposed works
focuses on sensors and wearables for physiological and behavioral monitoring of stu-
dents, eye-tracking devices for capturing student attention and understanding Engagement
in Learning.

Emotional state and posture recognition have become an important topics for stu-
dent engagement detection [20–25]. Additionally, contributions such as that of Salmeron-
Majadas et al. [26] seek to collect and process keyboard and mouse interactions to measure
how students perform during learning activities. Other works centered around student
emotional state detection analyze and process signals from Electroencephalogram (EEG),
Electromyogram (EMG), Electrocardiography (ECG), Electrodermal activity (EDA), heart
rate variability, skin temperature, blood volume pulse, respiration, or Electrodermogra-
phy (EDG)/galvanic skin response (GSR) [27–37]. Researchers [38–47] report the use of
deep learning and machine learning (ML) techniques for emotion classification. Finally,
other techniques rely on emotion recognition via computer vision [22,41,48–50], linguistic
semantic approaches [51], and biological features [52].

Our analysis of the aforementioned works leads us to conclude that emotion recogni-
tion based on physiological signals is highly applicable to the study of student learning
processes. Most of the physiological signals involved in such studies analyze and process
EEG data from wearable devices such as wristbands or headbands. Other studies rely on
strategies that combine facial expression recognition with the monitoring of vital signs and
other factors, such as keystrokes, body movements, muscle pressure, or gesture rigidity. It
also seems that Machine Learning Algorithms (MLA) and computer vision are the most
common techniques to detect student emotion states and engagement through factors such
as facial expressions, eye movement, and speech. Some deep-learning-based algorithms
have been developed to monitor in real time emotions such as anger, disgust, fear, happi-
ness, sadness, and surprise. These algorithms compute Mean Engagement Score (MES) by
analyzing data retrieved from facial landmark detection and emotional recognition.

From this understanding, the use of information technologies for engagement level
detection in different educational subjects such as Spanish, history, science, or mathematics
based on innovative technologies such as the recognition of physiological signals represents
an opportunity to improve the teaching–learning process.

This research has four objectives that distinguish it from similar reviews. First, we
review and identify commercial and non-commercial wearables that use sensors for en-
gagement detection. Second, we identify the common sensors attached to those wearables.
We also highlight the key physiological variables involved in student engagement detection
and monitoring. Finally, we review and discuss the FDA approval status of the reviewed
commercial wearables.

2. Main Physiological Signals for Student Engagement Detection

The sources of data for the collection of emotional and physiological data in learning
environments are diverse. According to Feidakis [53], some tools can compute physiolog-
ical signal readings, whereas some others allow for observing behavioral activity. Some
parameters and signals commonly used for emotion state detection and physiological
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monitoring are introduced below [53]. Additionally, Figure 1 visually illustrates the body
parts commonly associated to the measurement of these parameters and signals:

Figure 1. Physiological Variables for Engagement Detection and Associated Body Parts.

Electroencephalography (EEG): According to Rogers [54], EEG is a technique for reg-
istering and analyzing the brain’s electrical activity. Neurons, also referred to as brain
nerve cells, produce electrical impulses that oscillate rhythmically in different patterns. An
EEG is used to measure and record brain activity patterns. The instrument’s recording
is called an electroencephalogram. In educational contexts, EEG measurements should
provide a more objective indication of how the brain functions during learning activities
over time in comparison to the think-aloud type of self-reporting technique. Additionally,
EEG can distinguish between the different brain’s active states quantitatively by analyzing
the wavelength band.

Electrocardiogram (ECG): An ECG records the natural electrical impulses that coordinate
the contractions of the various parts of the heart to show the rate at which the heart
beats, the rhythm of the beats (steady or irregular), and the strength and timing of the
electrical impulses as they travel through the various parts of the heart [55]. In a learning
environment, monitoring ECG patterns can help track students’ attention in the classroom
and their cognitive activities.

Blood Pressure (BP): BP refers to the force of the blood pushing against the walls of the
arteries. It is measured in millimeters of mercury, and it is expressed as a measurement with
two numbers, one number on top (systolic), and the other one on the bottom (diastolic), as
in a fraction (for instance, 120/80 mmHg). Systolic pressure is the pressure of the blood
when the heart beats or contracts. Conversely, diastolic pressure is the pressure of the
blood between beats; that is, when the heart relaxes [56]. According to Taj-Eldin et al. [57],
measuring BP helps monitor changes in a person’s emotional state, such as stress. If a
student experiences a stressful situation, the body produces hormones that temporarily
increase BP.
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Electromyogram (EMG): An EMG is a test that measures electrical discharges from
muscles. The test is performed by placing a thin needle into a muscle and measuring its
electrical activity at rest and during use [58]. Monitoring EMG signals can help identify
student emotional arousal during educational activities. Measuring the movement of facial
muscles through EMG provides parameters to study student behavior during interactions
with dynamic visual content.

Skin temperature (ST): According to Yasuma and Hayano [59], skin temperature is
measured on the surface of the human skin; thus, only skin contact is required. Further-
more, including body and peripheral temperature as a physiological parameter is useful
for detecting emotions such as stress. The use of skin sensors to monitor parameters
such as skin temperature facilitates emotion detection and allows researchers to measure
student engagement in different educational activities, such as watching movies and role
playing [60].

Galvanic Skin Response (GSR): It measures skin conductance. GSR is measured by
placing two electrodes on the skin surface, namely on the fingers. One electrode applies a
small amplitude alternating current into the skin, and the other is used to calculate skin
impedance using Ohm’s Law given a voltage [61]. GSR is a function of skin moisture level
that is related to the sweat glands. Through the sweat glands it is possible to measure
emotional arousal, which leads to an increase in sweat gland activity. In the educational
context, research has measured both student engagement and emotional arousal during
educational activities such as reading using GSR data [62].

Photoplethysmography (PPG): According to Allen [63], PPG is a simple and affordable
optical technique used to detect changes in blood volume in the microvascular bed of
tissues. It is often used noninvasively for measurements on the skin surface. In educational
research, PPG sensors have been useful for measuring parameters such as heart rate to
detect student cognitive engagement during learning activities.

Respiratory pattern (RP), Respiratory volume (RV) and heart rate (HR): According to
Braun [64], in the ventilation process that allows the movement of air into the lungs, the
respiratory system has a central respiratory pacemaker within the medulla of the brainstem.
Neuronal output travels from this center by the spinal cord to the respiratory muscles. The
changes made by the inspiratory and expiratory muscles, as they contract and relax, cause a
rhythmic breathing rate and pattern. Changes in respiratory patterns are related to positive
emotions such as happiness. Some of the changes include increased variability in the
respiratory pattern or decreased respiratory time. On the other hand, respiratory volume
relates to the volume of gas present in the lungs at a specific time during the respiratory
cycle [65]. Some lung volume parameters, such as inspiratory reserve volume, tidal volume,
and expiratory reserve volume, are measured by spirometry. However, functional residual
capacity, total lung capacity, and residual volume are measured by body plethysmography,
nitrogen washout, and helium dilution. Finally, heart rate refers to the number of times
the heart beats per minute and is used to monitor cardiac activity [57]. Even though it
provides partial information on the heart’s activity, monitoring heart rate is useful for
measuring student engagement in different teaching modalities. For instance, during active
learning activities based both on problem-solving and peer discussion, heart rate tends to
increase [66].

Facial Expression Recognition (FER): Facial expressions are changes that occur in the
human face [67]. According to Dewan et al. [41], facial expressions are directly associated
with perceived engagement. One of the methods for the detection of facial expressions
is the analysis of facial images. Analysis methods used to extract information about
engagement use geometric and holistic features. Such methods are classified in part-based
and appearance-based methods. The study of FER among students is useful to identify
their emotions, which helps teacher recognize whether students understand or not a given
topic, for example.

Gestures and postures: According to Dewan et al. [41], gestures and posture are forms
of nonverbal communication expressed by human body language. They are linked to
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emotional-cognitive states that either favor or hinder learning. In their research, Dewan
et al. [41] collected data from webcam video recordings, skin conductance, and Kinect
depth video to infer student engagement. The analysis of gestures such as hand movements
helps determine a person’s intention when performing an action, which allows teachers
and experts to detect student attention or disengagement in the learning process.

Eye movements: Eye movements have been widely used to understand the emotional
states of students during online educational activities [41]. In their work, Dewan et al. [41] re-
view a series of studies in which eye movement patterns, head movements, and facial features
measure the level of student engagement and concentration in online learning environments.

Keyboard and mouse motion capture: The mouse motion technique analyzes features
such as average speed, inactivity, the orientation of mouse movements, mouse speed,
acceleration, hand agitation, click coordinates, scrolling, temperature, humidity, and user
keystroke intensity to detect a person’s mood. On the other hand, analyzing keyboard
movements to determine student affective states or engagement implies analyzing elements
such as keystroke verbosity (number of keys and blanks), keystroke time (latency measures),
pause behaviors, typing speed, the number of characters typed during a 5-s interval, total
typing time, and idle times [26]. Overall, the analysis of mouse and keyboard interaction
patterns during tasks such as free text typing enables the study of student affective states
during learning activities.

Physiological signals detectable through the headband: Most of the physiological signals
detected through a headband use EEG with features such as Power Spectral Density (PSD),
Signal Power (SP), and Common Spatial Pattern (CSP) [27]. Signals measured through a
headband can help monitor student concentration during educational activities, which is
in turn helpful for teachers to monitor student engagement in class.

3. Methods

This paper is a review of sensor technologies from the IoT perspective. We high-
light how sensors attached to wearables manage to detect and monitor student cognitive
engagement in learning environments through the recording and processing of physi-
ological signals. We rely on the PRISMA [68] statement to ensure research clarity and
methodological robustness.

Inclusion and exclusion criteria. Initially, we retrieved 4142 queries from a selected
set of databases. Below, we describe the review inclusion and exclusion criteria:

Inclusion criteria. We searched for studies published from 2010 to 2021 on (1) engage-
ment detection in learning environments, (2) physiological signal monitoring, (3) com-
mercial and non-commercial wearable devices and sensors, (4) IoT wearable devices, and
(5) FDA-approved medical devices.

Exclusion criteria. We discarded search results of researches that (1) were not written in
English, (2) were presented in the form of reports and letters, (3) was not a first study, and
(4) were not peer-reviewed.

Information Sources. The keywords of our research questions were identified and
classified into two groups: computing technology and engagement detection. These areas
of knowledge helped us to determine the specialty of the scientific digital library chosen as
an information source. In terms of engagement detection, we relied on PubMed (3%) and
Nature (19%), whereas in terms of computing technology, we chose Science Direct (9%),
Wiley Online Library (7%), IEEE Xplore (1%), Hindawi (15%), Inderscience (8%), Springer
Link (17%), ACM Digital Library (18%), and MDPI (3%). During federate search on Google
Scholar, all these scientific libraries yielded good results. Once the libraries were selected,
we retrieved relevant studies by submitting search queries to the corresponding search
engines of each digital library (See Figure 2). The search was performed from January to
December 2021.
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Figure 2. Distribution of Information Sources.

Search Strategy. We combined keywords using Boolean-like connectives to filter the
search results. The keywords of the search were extracted from the keywords that shaped
the research questions. The search strategy resulted of a series of intermediate searches that
led to the answer to the research question. These intermediate searches were ordered to
determine the search terms to be used in the posterior queries:

1. Sensors and biosensors that measure these physiological variables;
2. FDA-approved commercial wearable devices for engagement detection in

learning environments;
3. Commercially available consumer wearable devices using sensors for engagement

detection in learning environments;
4. Non-commercial wearable devices using sensors for engagement detection in

learning environments;
5. Physiological variables involved in engagement detection in learning environments.

Queries 3 and 4 were used to the databases. Query 3 resulted in the following search
expression, which used adjacent search terms conjugated with AND and OR connectives
as follows:

‘Engagement Detection’ AND ‘Learning Environments’ AND (‘Physiological Signals’
OR ‘Physiological Variables’ OR ‘Physiological Parameters’) AND (‘students’ OR ‘young
people’) AND ‘wearable’.

Results showed that the physiological variables involved in the students’ emotions
were the relevant search terms. Query 4 integrated these search terms into a search ex-
pression whose implementation produced new results associated with the physiological
variables. Similarly, as the results of each of the queries detailed above generated new
search terms, the results were progressively expanded to those that were relevant to this
study. The results of the last phase of consultation included those wearable devices that
contain sensors (biosensors) which measure physiological variables in students. The wear-
able devices included could be commercial or non-commercial and, in the first case, they
could be FDA-approved or not.

Selection process. Three subject matter experts (SMEs) screened the abstracts and
titles of the 4142 relevant papers retrieved at the search stage. Next, the information was
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grouped into eight categories: wearable manufacturer, model, form factor (it refers to the
size, type, and physical specifications of the device), sensors used, measured parameters,
physiological signs detected, API, and FDA status. Following this first analysis 3933 papers
were discarded. The remaining 209 papers became of interest for a more detailed analysis
of their content. Following this second analysis, we excluded 183 more papers. Finally,
only the remaining 26 papers were selected for this review. These papers came from the
following digital libraries: PubMed (3), Nature (5), IEEE Xplore (2), ScienceDirect (1), MDPI
(2), Springer Link (2), ACM Digital Library (4), and other sources (6). In Figure 3, the
PRISMA diagram details our study search and selection strategy.

Figure 3. PRISMA Flow Diagram of the Search Strategy.

Data collection and analysis. We categorized relevant information from the studies
and migrated it to structured tables for a thorough analysis. The database thus contained
details on current commercial and non-commercial wearables and sensors for engagement
detection. We did not perform a randomized controlled selection, since we found a rela-
tively small number of wearables; only 26. Information of interest for each wearable was
as follows: device manufacturer, model, form factor, sensors used, parameters measured,
physiological signs being detected, API, and FDA approval status.

4. Results
4.1. Study Selection

We initially collected 4172 records across the digital libraries mentioned in the begin-
ning of this section and listed in Figure 3. These records were then screened to assess their
relevance, thus discarding 3933 of them. The eligibility of the remaining 209 records were
evaluated by analyzing the relevance of their full-text content. The evaluation excluded
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183 records for several reasons, including the following: (i) the papers were not writ ten in
English, (ii) they focused on topics irrelevant to the research, and (iii) they were irrelevant
to the aim of the research questions. Therefore, only 26 studies were included in the review
as primary researches after applying the inclusion and exclusion criteria for eligibility.

4.2. Study Characteristics

We grouped the identified wearable devices into two large categories: commercial
wearables and non-commercial wearables. Commercial wearables included those being
manufactured, those already found on the market, and those being in presale by the time of
writing this paper. Conversely, non-commercial wearables comprised all those wearables
still found at prototype phase and those reported in scientific literature but not yet being
manufactured by the time of writing this paper. Reviews of each device category, including
79 wearable devices and 15 non-commercial wearable devices, are presented below.

4.2.1. Classification of Wearables for Learning Engagement Detection in
Learning Environments

In terms of the biosensors comprised in the wearables, Table 1 presents our classi-
fication. This classification is based on the analyses of wearable biosensor technologies
proposed by [69,70], and it groups our findings into three categories: mechanical biosensors,
physiological biosensors, and biochemical biosensors. The table also lists the technologies
upon which these sensors rely, their applications in engagement detection, and the types of
wearables using these sensors.

Table 1. Classification of Biosensors for Cognitive Engagement Detection.

Type of Wearable Biosensor Description Wearable
Biosensor Technologies Wearable Device Applications

Mechanical
(Accelerometers and motion

sensors) [69,70].

Accelerometers and motion
sensors require the integration

of another wearable
physiological monitoring device

as well as some type of
computer software interface

equipped with specific
algorithms for signal

manipulation and analysis.
They are especially valuable

when combined with wireless
heart rate and ECG monitoring.

Accelerometer with
ECG necklace

Accelerometer and wireless
heart rate monitor

Motion sensor algorithm

Leap Motion
Smartwatch
Armband
Headband
Chest strap

Tracking gait
Motion sensing

Physiological [69,70].

Physiological sensors can be
used for predicting obstructive

sleep apnea and monitoring
heart rate, oxygen saturation,

heart rate variability, breathing
rate, and oxygen saturation.
Further, these sensors can
measure stress levels and

mental fatigue.

PPG ring sensor
PPG biosensors

with smartphones
PPG ECG magnetic earring

and wireless earpiece
PPG biosensors with GSR

Ring
Muse band S

Armband
Headband

Smartwatch
Wristband

Abdominal patch
Chest patch
Chest strap

Vest
Abdominal respiration belt

GSR Velcro electrodes

Concentration monitoring

Biochemical [69,70].

Biochemical sensors can be used
for non-invasive sweat

monitoring through epidermal
tattoo potentiometric sodium
sensors with wireless signal

transduction. Further, they are
used for one-point wireless ECG

acquisition with flexible
polydimethylsiloxane

(PDMS) electrodes.

Epidermal tattoo
potentiometric sodium sensor

Flexible PDMS electrode
Flexible thick-film
glucose biosensor

Hydrogel-based (PAAM)
photonic sensor

Textile based patch with
optical detection system
Knitted fabric biocloth

Finger and limb
motion detection

4.2.2. Commercial Wearables for Engagement Detection

Our review of commercial wearables for engagement detection comprises commer-
cially available wearables that set monitoring metrics for detecting engagement. However,
notice that most of these devices do not limit themselves to engagement detection in learn-
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ing environments, as they are reported to have other applications. Our findings revealed
that a wide range of commercial wearable devices for monitoring physiological parameters
and detecting emotional states have applications in healthcare [70,71]. Table 2 presents our
classification of commercial wearable devices for engagement detection. This classification
takes into account the following aspects of each device: manufacturer, model, form factor,
parameters measured, physiological signs detected, and APIs. Our most important findings
concern the different wearable form factors commercially available, including armbands,
chest belts, wrist monitors, chest patches, chest straps, contactless in-bed sensors, earbuds,
headbands, smart rings, smartwatches, wristbands, and T-shirts. Both smartwatches and
wristbands are the most common form factors among manufacturers. Examples of smart-
watches include the Huawei Watch 3, Venu® Sq from Garmin, the Apple Watch Series 7,
and the Samsung Gear Sport. As regards the parameters measured by these wearables,
the following stand out: skin temperature, oxygen saturation, respiratory rate, heart rate,
heart rate variability, blood pressure, EEG, stress levels, sleep, EMG, step tracking, and
PPG. On the other hand, the most common physiological signals involved in engagement
detection are stress, relaxation, surprise, postures, engagement, concentration, and laugh.
Finally, each wearable relies on different type of software, which depends on the physical
components of each device and the parameters that can be measured.

We can identify the contribution of the devices to assist and increase student engage-
ment during educational activities. We found that the Chest strap, Smartwatch and Leap
Motion can detect ECG signals, and their application is focused on gait tracking and mo-
tion tracking. Meanwhile, the Armband, Wristband, Ring, Abdominal patch, Headband
and GSR Velcro electrodes can detect PPG and GSR signals, which have application in
concentration monitoring. Furthermore, epidermal patches and textile patches can detect
ECG signals in an inhaled form that facilitate the detection of movement in the extremities.

Additionally, ECG signals such as heart rate or heart rate variability are associated with
stress, surprise, relaxation and concentration. Meanwhile, PPG signals such as blood volume
or oxygen saturation are related to stress, laughter, interest and frustration. In both cases,
physiological signals allow the detection of students’ engagement in educational activities.

Most of the commercial wearables can record important physiological characteristics,
such as respiratory rate, barometric pressure, posture, skin temperature, muscle movement,
blood oxygenation, and heart rate to name but a few. Further, such devices usually transfer
the recorded data to be processed using wireless technology. Once the data is processed,
wearable users can visualize the data reports via a mobile application. As our findings
revealed, commercial wearable devices are mostly smartwatches (32%). Conversely, less
commonly manufactured wearables include helmets, bracelets, spoons, smart thermome-
ters, smart sleeves, and fitness trackers (1%). Devices with 10–11% of incidence in the
review include wristbands and chest patches, whereas headphones, analog watches, head-
bands, smart rings, earbuds, contactless in-bed sensors, and chest straps only showed 3%
of incidence. Figure 4 introduces a graph for the classification of the commercial wearable
form factors reported in the literature.

Wearable devices with healthcare applications must be approved in terms of reliability
and efficiency. FDA-approved wearables for engagement detection have proved to be
efficient in measuring physiological signals for detecting and monitoring engagement.
Each wearable reported in the literature holds one of the four FDA statuses: approved,
clear, unknown, and unapproved. Our findings indicated that 51% of the devices reported
in the literature had an unknow FDA status, which is mainly due to the fact that most
device manufacturers do not disclose such type of information. Conversely, 33% of the
devices have a public FDA registration. This information is summarized and visually
presented in Figure 5.
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Table 2. Commercial Wearable Devices for Engagement Detection.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Biovotion™ [71] Everion Armband HR sensor, PPG sensor ST, SpO2, RR, HR,
HRV, Sleep Stress, relaxation Everion device Approved

Abbott [72] FreeStyle Libre Semi-invasive
Continuous Glucose

Monitoring
(CGM) sensor

ST, BP Distress Ambrosia Approved (2020)

Halo Sport [73] Halo Sport 2.0 Headphones Electro neurostimulator Neuropriming Halo Sport Approved

Scosche™ [74] Scosche Rhythm24 Armband HR optical sensor
PPG, HR, HRV, cadence,

step tracking, burned
calories, distance, speed

Stress,
postures, surprise

ScoscheSDK24
Framework Not Approved

Equivital™ [75] LifeMonitor Chest belt

ECG biosensor, HR
sensor, medical-grade

thermometer, and
tri-axis accelerometer

ST, SpO2, RR, HR,
HRV, GSR Stress, engagement Equivital Approved

Med/Wise [76] Gluco Wise ® Clip (thumb,
forefinger or earlobe) CGM radio wave Sensor Continuous glucose

monitor (CGM) No specified Gluco Wise ® -

Biobeat™ [71] Biobeat™ Chest patch Chest patch,
wrist monitor PPG ST, SpO2, RR, HR, HRV,

BP, ECG Stress, surprise Biobeat Approved (2019)

G-Tech Medical™ [77] G-Tech Medical™ Chest patch EMG EMG Surprise G-Tech Medical -

Health Care
Originals™ [78] ADAMM-RSM Chest patch

Acoustic sensor,
HR sensor,

temperature sensor
HR, ST, RR, cough Stress, surprise Health Care Originals -

iRhythm™ [79] Zio patch Chest patch HR sensor ECG Surprise iRhythm™ Clear (2021)

Preventice™ [80] Bodyguardian Heart Chest patch Accelerometer,
ECG sensor ECG Surprise Preventice™ Clear (2012)

VitalConnect™ [81] Vital Patch Chest patch
Accelerometer,

ECG sensor,
thermistor

ECG, HR, HRV, RR, ST,
body posture, activity,

BP, SpO2
Stress, surprise VitalConnect™ website Cleared

BioTelemetry™ [82] BioTelemetry™ Chest patch ECG sensor ECG Surprise BioTelemetry™ Cleared

Kenzen™ [83] Kenzen™ Chest patch HR biosensor Sweat, HR, ST Stress, surprise Kenzen™ No Approved

Theranica Nerivio
Migra™ [84]

Theranica Nerivio
Migra™ Chest patch EMG sensor EMG Surprise Theranica Approved (2019)
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Table 2. Cont.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Medtronic™ [85] Zephyr BioHarness Chest Strap CGM sensor

HR, HRV, RR, body
posture, activity

intensity, acceleration,
accelerometry, ST,

burned calories, speed,
distance, elevation,

BP, SpO2

Stress, surprise Zephyr: Developer and
User Tools Approved (2012)

Beddit™ [71] Beddit Sleep Monitor Contactless
in-bed sensor PPG sensor RR, HR, sleep measures Stress, relaxation Beddit™ -

Beurer™ [71] Beurer SE80 Contactless
In-bed sensor

Respiratory rate sensor,
HR sensor RR, HR, sleep measures Stress, relaxation Beurer™ -

Cosinuss™ [71] Cosinuss Two Earbud
HR sensor, body

temperature sensor,
3D accelerometer

HR, HRV, SpO2, activity Stress Cosinuss™ -

Yono™ [70] Earbud Earbud Thermometer ST Stress Yono™ -

BioIntellisense™ [71] BioIntellisense
Epidermal patch Epidermal patch HR sensor ST, RR, HR,

coughing, sneezing Stress BioIntellisense™ Approved (2019)

Bose® [86] SoundSport ® Pulse Wireless headphones HR sensor HR, PPG Stress Bose® Connect -

VivaLNK™ [87] Fever Scout Epidermal patch ECG and HR sensors ST Stress,
relaxation, surprise VivaLINK Approved (2017)

Vital Scout Epidermal patch ECG and HR sensors HR, HRV, RR, activity,
sleep, stress levels Stress, relaxation VivaLINK Approved (2019)

Spire Health™ [88] Spire Health Tag Fitness Tracker HR, ECG, and
RR sensors

HR, RR, breathing
pattern, activity

Stress,
relaxation, surprise Spire Health™ Not Approved

Muse™ [89] Muse S Headband EEG sensor
EEG, PPG, SpO2,
breathing pattern,

sleep tracking

Relaxation,
concentration, postures,

surprise, frustration,
interest, laugh

Muse Developers -

Motiv™ [90] Motiv Ring Ring Accelerometer and PPG
and HR sensor PPG, HR Stress, surprise Motiv™ -

Oura™ [91] Oura Ring Ring

Body temperature
sensor, optical, infrared

sensors, 3D
accelerometer and
gyroscope sensor

PPG, HR, HRV, ST, RR,
activity, sleep

Stress,
surprise, relaxation Oura Cloud API -
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Table 2. Cont.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Komodo
Technologies™ [92] AIO smart sleeve Sleeve ECG sensor

ECG, HR, HRV, activity
intensity, SpO2, step

tracking, distance

Stress, postures,
surprise, interest, laugh AIO Sleeve App No Approved

Kinsa™ [71] Kinsa Smart thermometer ST sensor ST Stress Kinsa™ Approved (2013)

Orpyx™ [70] Surro Gait Rx Smartwatch, shoe insert,
shoe pod Pressure sensor BP Stress, surprise Orpyx™ -

Surro Sense Rx Watch, shoe insert,
shoe pod Pressure sensor BP Stress, surprise Orpyx Cleared

Apple™ [93] Watch Series 3,4,5 Smartwatch

Oximeter, electrical HR
sensor, optical HR

sensor, accelerometer,
gyroscope sensor

Fitness and
activity-tracking, ECG,
PPG, HR, HRV, sleep

quality, stress levels, RR

Stress, relaxation,
postures, surprise,

laugh, interest
Apple™ Developer Approved

Empatica™ [94] Embrace 2 Smartwatch

EDA sensor, peripheral
temperature sensor,
3-axis accelerometer,

gyroscope sensor

HR, HRV, EDA,
ST, activity

Stress,
engagement, laugh

Empatica™
for Developers Approved (2018)

E4 Bracelet

PPG sensor, 3-axis
accelerometer, EDA
sensor (GSR Sensor),

infrared
thermopile sensor

BVP, GSR, SC, HR, HRV Stress, relaxation,
arousal, excitement

Empatica™
for Developers Not Approved

Fitbit™ [95] Charge 4 Smartwatch
3-axis accelerometer,

optical HR
monitor, altimeter

PPG, HR, SpO2,
activity, sleep

Stress,
surprise, relaxation Fitbit™ Not Approved

Ionic Smartwatch

3-axis accelerometer
3-axis gyroscope sensor,

optical HR monitor,
altimeter, ambient light
sensor, vibration motor

HR, SpO2,
activity, sleep Relaxation Fitbit™ Approved

Versa 2 Smartwatch

3-axis accelerometer,
optical HR monitor,

altimeter, ambient light
sensor, relative

SpO2 sensor,
built-in microphone

HR, guided breathing,
SpO2, step tracking,

distance, stress
level, sleep

Stress, relaxation,
postures, surprise Fitbit™ Approved
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Table 2. Cont.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Gyenno [96] Gyenno Spoon Spoon Accelerometer No specified Stress Gyenno -

Gl Logic [97] AbStats Abdominal device Vibration sensor,
acoustic sensor A telemetry monitor GI Logic -

Garmin™ [98] Fenix 5 Smartwatch HR sensor HR, SpO2,
activity, sleep Stress, relaxation Garmin™

Connect Developer -

Forerunner 945 Smartwatch HR sensor HR, SpO2, RR,
activity, sleep Stress, relaxation Garmin™

Connect Developer -

Venu Smartwatch Pulse oximeter,
HR sensor

HR, SpO2, RR,
activity, sleep Stress, relaxation Garmin™

Connect Developer -

Vivoactive 4 Smartwatch Pulse oximeter,
HR sensor

HR, SpO2, RR,
activity, sleep Stress, relaxation Garmin™

Connect Developer -

Vivomove 3 Smartwatch Pulse oximeter,
HR sensor

Step tracking, sleep
quality, HR, stress

levels, body
composition, SpO2,
intensity minutes,
details of physical

activity,
breathing frequency

Stress, relaxation,
postures, surprise

Garmin™
Connect Developer -

Holter [75] Stat-On™ Portable sensor ECG sensor HR, HRV Stress No specified -

Honor™ [99] Honor Watch Magic 2 Smartwatch

Accelerometer,
gyroscope,

magnetometer, optical
HR sensor, ambient
light measurement,

and barometer

HR, stress levels, sleep
quality, distance,

speed, SpO2

Stress,
relaxation, surprise Huawei™ Developers -

Huawei™ [100] Huawei Watch fit Smartwatch

6-axis IMU sensor
(accelerometer sensor,

gyroscope sensor),
Optical HR sensor,
capacitive sensor

HR, SpO2, sleep quality,
stress levels, step
tracking, distance

Stress, relaxation,
postures, surprise Huawei™ Developers -

Band 6 Smart Watch
Accelerometer, three

electrodes, ECG sensor,
barometric altimeter

ECG, SpO2 Stress, relaxation,
postures, surprise Huawei™ Developers -
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Table 2. Cont.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Mobvoi™ [101] TicWatch Pro 2020 Smartwatch HR sensor HR, step tracking Stress,
postures, surprise Mobvoi™ Developers -

LifeBeam [102] LifeBeam diy kit Helmet Optical sensor HR, blood flow, and
oxygen saturation LifeBeam -

Kuaiwear Kuai [103] KUAI-Sport
Headphones Headphones HR sensor

and accelerometer HR Stress No specified -

Omron™ [104] Heart Guide Smartwatch Accelerometer, PPG HR
and oscillometer

PPG, HR, BP, ECG, step
tracking, distance

Stress, postures,
surprise, laugh, interest

OMRON API
for Developers Approved (2019)

OnePulse™ [105] OnePulse™ Smartwatch ECG sensor HR, activity,
sleep patterns

Stress,
relaxation, surprise Not specified Approved

Samsung™ [106] Samsung™ Gear Sport Smartwatch
Accelerometer, Gyro

Sensor, Barometer, HR
monitoring sensor

HR, step tracking,
sleep quality

Stress, relaxation,
postures, surprise Samsung™ Developers -

Samsung™ Galaxy
Watch Active 2 Smartwatch

Accelerometer,
barometer, gyroscope

sensor, HR sensor

HR, sleep quality, stress
levels, BP, distance,

step tracking

Stress, relaxation,
postures, surprise Samsung™ Developers -

SmartMonitor™ [105] SmartMonitor™ Smartwatch Accelerometer
Detects repetitive
shaking motions,

HR, activity
Stress, surprise SmartMonitor™ -

Verily Life
Sciences™ [107] Verily Study Watch Smartwatch CGM sensor Wireless monitor for

pulse, HR, ECG, ST
Stress, surprise,
laugh, interest Verily Approved (2019)

Viatom
Technology™ [105] Viatom Checkme O2 Smartwatch Oximeter, HR sensor

HR, ECG, SpO2, activity
tracker, ST,

sleep monitoring

Stress, relaxation,
surprise, laugh, interest Viatom Approved

Withings™ [108] Withings™ ScanWatch Smartwatch ECG, oximeter
ECG, HR, SpO2, step

tracking, distance, sleep
quality

Stress, relaxation,
postures, surprise,

laugh, interest
Withings™ Developer Approved

Move ECG Analog watch
Heart rate sensor, 3-axis

accelerometer, 3-axis
gyroscope sensor

HR, ECG Stress Withings Developer -

Xiaomi™ [109] Huami Amazfit
Health Band Smartwatch ECG sensor, pedometer HR, movement tracking Stress,

postures, surprise Mi Developer Approved (2019)
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Table 2. Cont.

Manufacturer Model Form Factor Sensors Used Parameters Physiological Signs API FDA

Mi Smart Band 5 Smartwatch ECG sensor HR, sleep quality, step
tracking, stress level, BP

Stress, relaxation,
postures, surprise Mi Developer Not Approved

Sensoria™ [110] T-Shirt Short
Sleeve + HRM T-Shirt HR monitor HR, speed, distance,

step tracking
Stress,

postures, surprise Sensoria™ Platform -

Ambiotex™ [111] Ambiotex Smart Shirt T-Shirt ECG and HR sensors Stress level, ECG, HR,
HRV, step tracking

Stress, postures,
surprise, laugh, interest Ambiotex™ -

Tempdrop™ [70] Tempdrop™ Underarm armband Thermometer ST Stress Tempdrop™ -

Carré Technologies™
[112]

Hexoskin
Smart Garments Vest ECG sensor

ECG, HR, HRV, RR,
stress level, effort,
fatigue, activity

intensity, acceleration,
step tracking, sleep

quality, SpO2

Stress, relaxation,
postures, surprise,

laugh, interest
Hexoskin Developers -

Nuubo™ [113] Nuubo Wearable ECG Vest ECG sensor ECG Surprise, laugh, interest Nuubo™ Wearable ECG Approved

Zoll™ [114] Lifevest Vest Temperature sensor ECG Surprise, laugh, interest Lifevest Approved (2018)

AliveCor™ [115] Kardia Band Wristband Electrodes ECG Surprise, laugh, interest AliveCor™ Approved (2019)

Ava Science™ [70] Ava Wristband Wristband 2-wavelength optical
PPG sensor EDA, PPG, HR, ST Stress, surprise,

engagement, laugh Ava Approved

Sentio Solutions™ [70] Feel Wristband EDA, PPG HR, and skin
temperature sensors EDA, PPG, HR, ST Stress, surprise,

engagement, laugh Feel -

iHealth™ [116] Wireless Blood
Pressure Monitor Wristband Oscillometer BP, HR Stress, surprise iHealth™ Approved

MOCACARE™ [117] MOCACuff Wristband HR sensor BP, HR, SpO2 Stress, surprise Mocacare™ -

Wavelet™ [105] Biostrap Wristband Wristband 3-axis accelerometer
3-axis gyroscope sensor

HR, HRV, SpO2, RR,
in-depth sleep tracking

Stress, relaxation,
postures, surprise Biostrap -

WHOOP™ [71] WHOOP Wristband Wristband HR sensor RR, HR, HRV,
EDA, sleep

Stress,
engagement, laugh WHOOP™ -

Abbreviations: SpO2: Oxygen saturation; BP: Blood pressure; HR: Heart rate; HRV: Heart rate variability; EEG: Electroencephalogram; ECG: Electrocardiogram; PPG: Photoplethysmog-
raphy; EMG: Electromyography; EDA: Electrodermal Activity; GSR: Galvanic Skin Response; RR: Respiratory rate; ST: Skin temperature.
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Figure 4. Incidence of Commercial Wearable Form Factors in the Literature.

Figure 5. FDA Approval Status of Commercial Wearables for Engagement Detection.
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As regards the physiological signals involved in engagement detection, our findings
indicate that most of the commercial wearables can detect more than physiological signal
simultaneously, especially surprise, stress, interest, relaxation, and laugh. Table 3 summa-
rizes our findings of the commercial wearables reported in the literature with respect to
both the physical signs being monitored and the FDA approval status of each device.

Table 3. Main Physiological Signals for Engagement Detection.

Physiological Signal FDA-Approved Devices Non-FDA Devices Total

Distress 1 0 1
Stress 22 39 61

Relaxation 10 19 29
Sleep disorders 1 0 1

Postures 4 14 18
Surprise 23 25 48

Concentration 0 1 1
Frustration 0 1 1

Interest 11 6 12
Laugh 10 6 16

Emotional arousal 0 1 1
Excitement 0 1 1

Figure 6 graphically illustrates the distribution of the commercial wearables reported
in the literature with respect to the physiological signals for engagement detection.

Figure 6. Correspondence between Commercial Wearables and Physiological Signals for Engage-
ment Detection.

As our findings indicate, several commercial wearables reported in the literature
can detect more than one physiological signal simultaneously, especially surprise, stress,
interest, relaxation, and laugh, through monitoring techniques for respiratory rate, oxygen
saturation, blood pressure, and heart rate.
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4.2.3. Non-Commercial Wearables for Engagement Level Detection

Non-commercial wearables for engagement detection are mostly developed for re-
search purposes or are still at the development phase of the manufacturing cycle. Table 4
summarizes our review of non-commercial devices for emotion and engagement detection.
The table highlights the key characteristics of each wearable, which are also listed below:

• Aim: Physiological signal(s) monitored by the wearable.
• Device type: Form factor of the device (e.g., smartwatch, bracelet, headband).
• Function: Brief description of the device’s functionality.
• Sensors: Sensor technologies used to record physiological signal data.
• Real-time monitoring capability: Whether the device can monitor physiological signals

in real time.
• Educational environment: Type of educational environment where the wearable has

been implemented.

Table 4. Non-Commercial Wearables for Engagement Detection.

Aim Device Type Function Sensors
Real-Time

Monitoring
Capabilities

Educational
Environment

Physical exertion,
health, and heart

function monitoring;
tracking an
individual’s

performance and
exertion level [118].

Patch

It consists of a patch that
includes a sensor to measure
a biochemical (lactate) and

an electrophysiological
(electrocardiogram) signal

to monitor physical exertion,
health, and heart. The patch
can recognize emotions such

as stress and anger.

Lactate sensor,
electrophysiological

sensors
Yes Unstated

Skin temperature
measuring [119]. Patch

The patch detects
multimodal biosignals,

measures skin temperature
with a sensitivity of

0.31 Ω/◦C, skin
conductance with a

sensitivity of
0.28 µV/0.02 µS, and pulse
wave with a response time

of 70 msec.

ST, skin conductance,
and pulse

wave sensors
Yes Unstated

Heart rate
monitoring [120]. Scarf

It helps users to reflect on
their emotional state,

modify their affective state,
and interpret the emotional
states of other people. The
design of SWARM is based

on a scarf so that people
with different disabilities
have access to this type of
technology. SWARM can
detect emotions such as

stress, sadness, calm,
happiness, and excitement.

Biosensors Yes Unstated
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Table 4. Cont.

Aim Device Type Function Sensors
Real-Time

Monitoring
Capabilities

Educational
Environment

Heart rate and skin
conductance

monitoring [121].
Scarf

It is a design of a wearable
device based on a scarf form
factor. The device features

color-changing and
olfactory properties to affect

people’s emotional state.
The wearable comprises two
sensors: a heart rate sensor

and a skin conductance
sensor. When changing

color and emitting an odor,
the scarf potentiates positive

emotions and reduces
negative ones.

HR and EDA sensors Yes Unstated

Blood volume pulses
and muscle
contraction

monitoring [122].

Glove

It is an emotion recognition
framework using machine
learning of physiological
patterns. The framework
relies on a PPG sensor for
heart rate monitoring, an

EDA sensor, a skin
temperature sensor, and an
EMG sensor. The proposal

focuses on the
preprocessing of emotion
recognition and supports

the recognition of emotions
such as happiness, anger,
fear, disgust, and sadness.

PPG and
EMG sensors Yes Unstated

Physiological
arousal

detection and
monitoring [123].

Gloves,
bracelet

The device monitors the
student’s psychological and

physical condition using
heart rate, skin conductivity,
and respiration sensors. The
data obtained are sent to an

assistive host to process,
analyze, and evaluate

student moods and
stress levels.

HR sensor, EDA
sensor, respiratory

rate sensor
Yes Mobile

Detection of eye
movements, eyes
closed, and teeth
clenching [124].

Eyeglasses

AttentivU is a device that
monitors physiological data
to measure the engagement

and enhance learning
activities using silver
electrodes. The data

collected by the device can
be processed in real time or
sent to a separate computer.

EEG sensor or
electrooculography

(EOG)
Yes Unstated
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Table 4. Cont.

Aim Device Type Function Sensors
Real-Time

Monitoring
Capabilities

Educational
Environment

Monitoring of
physiological
characteristics

related to heart rate,
oximetry, skin

temperature, and
GSR [125].

Patch

The proposal uses an
Arduino board to obtain

physiological signals from
the user and connected

sensors to acquire data on
skin temperature, GSR,

pulsometer, and a
respiratory rate sensor. The

data is processed
using Matlab.

ST sensor, oximeter
breath-flow rate

sensor, HR sensor,
GSR sensor

Yes Unstated

Heart rate
monitoring [126]. Shirt

The prototype is based on
an Arduino Uno board to

which is connected a pulse
sensor that uses infrared

light to detect user
heart rate.

Pulse sensor Yes Unstated

Human physical
activity monitoring

[127].
Shirt

SensVest is a wearable
prototype to monitor

physical aspects. The device
includes a series of sensors
that allow the recording of

different data related to
human performance to

improve the understanding
of scientific concepts

in students.

HR sensor, ST
sensor, accelerometer Yes Unstated

Heart rate and
breathing rate

monitoring [128].
Patch

The device obtains an ECG
tracing using two electrodes
in symmetrical positions on
the user’s body and a third

ground electrode placed
next to one of the

sensing electrodes.

Electrodes,
ECG sensor Yes Computer

video

Heart rate variability
monitoring, skin

temperature
measuring [129].

Wristband

n-Gage is a system that
evaluates the engagement

levels of behavioral,
emotional, and cognitive

students. The system
detects the student’s

physical and physiological
signals and environmental

changes in the
educational environment.

EDA sensor,
accelerometer,

ST sensor
Unstated Unstated

EDA and pulse rate
monitoring [130]. Patch

The proposal measured and
recorded electrodermal
activity, pulse rate, and

facial recognition during an
e-learning session to

determine the level of
student engagement. The

data collected were
analyzed using software
developed with Matlab.

EDA sensor,
HR sensor Yes E-learning
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Table 4. Cont.

Aim Device Type Function Sensors
Real-Time

Monitoring
Capabilities

Educational
Environment

Upper body pressure
distribution [131]. Chair

While students perform
e-learning reading activities,

the student’s upper body
pressure is recorded using a

chair with a pressure mat.
The data is processed

using classifiers.

Pressure mat No E-learning

Feet posture and
movement

detection [132].
Insole

This platform contains an
insole with ground contact

force (GCF) plantar pressure
sensors. In addition, a

microcontroller with WIFI
technology collects the data
and sends it to a database to

be analyzed by a Human
Activity

Recognition classifier.

Accelerometer,
gyroscope sensor,

magnetometer,
barometer, and

range finder sensors

Yes No specified

Non-invasive sensors are common in the monitoring of physiological parameters
during educational activities. Further, physiological parameter monitoring is relevant to
research efforts that seek to develop and implement appropriate techniques for identifying
student engagement in the teaching–learning process. Figure 7 introduces a graphic
representation of our classification of non-commercial wearables for engagement detection
with respect to their form factor.

Figure 7. Classification of Non-Commercial Wearables by Form Factor.

Regarding to the contribution of non-commercial devices to assist and increase student
engagement during educational activities, patches can detect signals such as ST, GSR, EDA,
and ECG whose application is related to monitor the variation of the electrical properties
of the skin through sweat. Meanwhile, Scarf can detect HR and EDA signals related to
skin conductance monitoring. Gloves can detect PPG, EMG, HR, EDA, and RR signals
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related to monitor muscle contraction and physiological excitation. Regarding the Shirts,
they can detect HR, ST, and ECG signals applied for performance monitoring associated
with comprehension.

Under this context, EDA signals such as skin conductance are associated with stress
and distress. While, HR signals are associated with stress, sadness, calmness, happiness,
and excitement. EMG, RR, and PPG signals are related to happiness, anger, fear, disgust,
and sadness. Moreover, all the detected physiological signals can identify the level of
engagement of the students.

Table 5 summarizes our findings on the real-time monitoring capability of non-
commercial wearables for engagement detection. As can be observed, 87% of these wear-
ables reported in the literature can transmit physiological data in real time to other external
devices for processing. Conversely, merely 13% of the wearables lack such real-time
monitoring capability.

Table 5. Non-Commercial Wearables for Engagement Detection with Real-Time Monitoring.

Real-Time Monitoring No. of Devices Percentage

Yes 13 87%
No 2 13%

Table 6 summarizes our findings with respect to the main physiological signals in-
volved in engagement detection in the case of non-commercial wearables. The majority
of the non-commercial wearables reported in the literature can monitor two or more sig-
nals simultaneously.

Table 6. Physiological Parameters for Engagement Detection by Non-Commercial Wearables.

Target Parameter No. of Devices Percentage

Heart Rate 11 73%
Skin Temperature 5 33%
Skin Conductance 4 27%

Electrodermal activity 4 27%
Respiratory Rate 2 13%

Pulse Wave 1 7%
Oxygen Saturation 1 7%

Our findings revealed that heart rate is a key parameter measured by non-commercial
wearables to detect and monitor student engagement during educational activities. Other
important parameters include skin temperature, skin conductance, and electrodermal
activity. Similarly, most of the reviewed devices primarily aim at improving student
engagement levels during educational activities and thus academic performance.

5. Discussion
5.1. Challenges and Trends of Wearables for Engagement Detection

Even though technological progress has paved the way for the application of sensing
technologies in educational research, further efforts are still needed.

• Engagement detection proposals need to increase the number of physiological signals
being monitored.

• Despite having the ability to record physiological data in real time, some wearable
devices still lack mechanisms for analyzing and processing such data.

• It is important improve technical aspects of the wearables, such as battery performance
and device intercommunication for data transfer.

• Engagement research is a notorious opportunity in educational research, since phys-
iological data analysis and processing techniques can be more efficient than other
techniques, such as surveys, even though they cannot always speed up findings.
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• Technological trends point toward the design of non-invasive, comfortable wearable
devices, and thus provide manufacturers with a great opportunity to explore the
efficiency and suitability of new materials and device shapes. A clear example of this
is how sensors have been innovatively incorporated into chair and insole designs.
Such designs explore the suitability of measuring relatively uncommon parameters,
such as pressure on some parts of the body.

The main trends for engagement detection can be classified according to the methods
for detecting students’ engagement. These methods can be:

(1) Automatic: sensor data analysis, log-file analysis and computer vision techniques.
(2) Semi-automatic: engagement tracing.
(3) Manual: Observational check-list and self-reporting.

We believe the recent trends are focused in developing new computer vision tech-
niques for detecting facial expressions, gesture, posture and eye movement. For example,
for gesture and posture have been developed such as Muse S band [133], Everion [134],
Zephyr BioHarness [135], Xiaomi Mijia [136]. Muse S band can monitor Heart rate, EEG,
PPG, posture, sleep level, Respiration Rate and Relax indicator. Everion device can identify
Activity (move) indicator, Electrodermal activity/galvanic skin response, Heart rate, Respi-
ration Rate, Sleep indicator, Relax indicator and Blood Oxygenation (SpO2). Chest Strap
Zephyr BioHarness can measure Heart rate, body posture, activity intensity and SpO2.
Xiaomi Mijia can monitor Heart rate, ECG, movement, Respiration Rate.

For facial expression and eye movement, smart glasses have been developed such as
Oculus Quest Pro, iMotions Eye Tracking Glasses, Google Glass, Apple Glass and Tobii
Pro Glasses 2, and eye tracking devices such as EyeTribe [137]. Oculus Quest Pro can be
used to eye and face-tracking. iMotions Eye Tracking Glasses can be used to Track eye
position, Facial Expression Analysis and movement to access visual attention in real time.
Google Glass uses motion and voice recognition to process commands from the wearer
and also operate the device with eye movements. Apple Glass can identify gestures and
facilitate controls with eye movements. Tobii Pro Glasses 2 can be used to analyze human
behavior in real time using eye tracking. EyeTribe Tracker allows controlling applications
with user’s sight on desktop and tablet computers.

Additionally, with regards to sensor data analysis, embedded machine learning is used
for interpreting data in Internet-of-Things applications. In this context, machine learning
sensing capabilities are encapsulated in separate hardware components outside the central
embedded processor and application code. Machine Learning (ML) is a subcategory of
the Artificial Intelligence that refers to the process by which computers develop pattern
recognition, or the ability to continuously learn and make predictions based on data, then
make adjustments without being specifically programmed to do it.

5.2. Emerging Solutions

As wearable device technology progresses, solutions emerge to address common
problems, such as battery performance, device size, and device shape. Graphene sensors
are a clear example of innovative technological development. The use of graphene in
wearable technology is an important contribution to the development of wearable devices
for monitoring physiological, data such as brain signals. The recording of frequency levels
using platinum and iridium electrodes is typically above 0.1 Hz, whereas graphene-based
sensors could record brain signals below 0.1 Hz, thus increasing the amount of data that
can be processed and improving brain-related research and its application in medicine. The
use of graphene also has a positive impact on the battery performance of devices such as
smartphones, since graphene is highly conductive [138].

Finally, device portability, versatility, simplicity, and real-time monitoring capabilities
are important opportunities for improvement in sensing technology and ML techniques.
ML techniques can process large volumes of data, and their application in biosensors can
improve the monitoring of vital signs involved in the diagnosis of cardiovascular diseases,
such as arrhythmias and coronary syndromes. As a key advantage, biosensor technology is
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cloud-compatible, which facilitates sensor signal processing and data storage. Further, it is
easy to monitor health outside a clinical setting. The advantages of using biosensors and ML
techniques mostly contribute to transforming raw data into understandable information,
which in turn improves the performance of biosensors currently used for health monitoring,
disease diagnosis, treatment evaluation, and food safety [138].

5.3. Limitations

This research has five main limitations. First, our review did not include a comparative
analysis of the efficacy and reliability of the reviewed wearables in educational contexts.
Second, we did not analyze to what extent each wearable actually contributes to increased
student engagement during educational activities. Similarly, this review did not examine
mobile applications for physical sign monitoring, since the non-commercial wearables
reported in the literature were rarely linked to a mobile application for processing the
data. Additionally, we did not analyze the usability aspects of the wearable devices or their
user acceptance. Finally, our analysis of FDA approvals is partially incomplete, since most
wearable manufacturers do not disclose such information publicly.

This review can be used by software engineers, developers, and computer scientists to
develop mobile applications, educational platforms, or software to detect student engage-
ment using physiological sensors and wearable devices. These systems can help improve
the teaching–learning process to opportunely detect parameters such as frustration, bore-
dom, stress, concentration, or distress that allow teachers to develop new learning strategies
or improve existent.

6. Conclusions

This research is a review of current wearables used in educational environments for
detecting and measuring student engagement in learning activities. Each device reported
in the literature measures and analyzes different parameters, such as heart rate, skin tem-
perature, EEG, ECG, respiratory rate, oxygen saturation, and blood pressure. Commercially
available wearables for engagement detection are usually linked to a compatible mobile
application to store and process physiological data in real time. In the educational domain,
wearables and sensors for physiological signal monitoring can be used to identify the
parameters that are key to student engagement detection during educational activities. The
physiological signals being measured by a device strongly depend on the type of device.
Wearable form factors such as smartwatches, chest patches, and wristbands are the most
prominent in the market. As for non-commercial devices, the most cited form factors are
patches (33%), shirts, gloves, and scarfs (13% of occurrence each).

The fact that wearables usually support real-time monitoring of physiological sig-
nals allows researchers to expand scenarios for data collection beyond the classroom
and provides education experts with opportunities to redesign and propose meaningful
teaching–learning methods and strategies. We consider our review of FDA approval status
as a point of reference to judge both the reliability of the reviewed wearables in terms of
data accuracy and their acceptance by users. In this sense, 33% of the wearables reported in
the literature haven been approved by the FDA, 7% hold a Clear status, 10% have not been
approved yet, and 51% maintain an unknown FDA status.

The scope of this research only covers the analysis of wearable devices currently
available for student engagement detection during learning activities. Our review is not an
analysis of the efficiency of such devices in terms of increased student engagement, nor
is it a comparative analysis of the most suitable parameters for engagement detection. To
conclude, we list relevant findings of this review:

• In total, 32% of the commercial wearable devices reviewed are smartwatches.
• In total, 40% of the commercial wearables have either an approved FDA status or a

clear status.
• Engagement detection wearables commonly assess student physiological signals such

as stress and surprise through physiological signals.
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• Heart rate stands as the most prominent physiological signal measured by commer-
cial devices.

• Patches are the most common form factor of non-commercial wearables for engage-
ment detection.

• In total, 73% of the non-commercial devices reported in the literature support real-time
physiological signal monitoring.

• Physiological signals commonly recorded by non-commercial devices are related to
heart rate, skin temperature, skin conductance, EDA, respiratory rate, pulse wave, and
oxygen saturation.
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