
Multiple Software Product Lines: applications and

challenges

Aguilar-Lasserre1 and María Karen Cortés-Verdín2

 Division of Research and Postgraduate Studies. Instituto Tecnológico de Orizaba, Vera-

cruz, México.
2Facultad de Estadística e Informática. Universidad Veracruzana, Xalapa, Veracruz, México.

1gtrujillot@ito-depi.edu.mx, ujuarez@ito-depi.edu.mx, aaguilar@itorizaba.edu.mx
2kcortes@uv.mx

Abstract. The goal of a software product line is to create a suitable platform for

fast and easy production of software for same market segment. However, a

software product line is limited because it needs to meet new stakeholder re-

quirements either through upgrades or the introduction of new technologies. A

Multi Product Line aims at deriving new software products from reuse of a set

of features provided by several heterogeneous software product lines without

modifying or altering the independent operation of the same. This paper pre-

sents a study about the application of Multi Product Lines in the software de-

velopment process. It shows some domains that illustrate applications of multi

product lines principle in the process and the product. Also, the main current

challenges in applying multi product line in software engineering are described.

This paper aims to show the importance and usefulness of applying multi prod-

uct lines approaches in Software Engineering.

Keywords: Software Engineering, Software Product Lines, Multi Product

Lines.

1 Introduction

Product lines are successfully used in both software and non-software domains

such as automotive, metallurgy and manufacturing to support systematic reuse. A

classic example is automobile manufacturing consisting of creating variations of a

single car model with a set of parts and a factory specifically designed to configure

and assemble such parts. Software Product Lines (SPL) are analogous to industrial

manufacturing, in which similar products are configured and assembled from reusable

prefabricated parts for fast and easy software development focused on a specific mar-

ket.

The Software Engineering Institute (SEI) defines a Software Product Line as a "set

of software-intensive systems that share a common, managed set of features satisfying

the specific needs of a particular market segment or mission and that are developed

© Springer International Publishing AG 2018
J. Mejia et al. (eds.), Trends and Applications in Software Engineering,
Advances in Intelligent Systems and Computing 688,
https://doi.org/10.1007/978-3-319-69341-5_11

Guadalupe Isaura Trujillo-Tzanahua1 Ulises Juarez-Martínez1, Alberto Alfonso á

1

mailto:gtrujillot@ito-depi.edu.mx
mailto:ujuarez@ito-depi.edu.mx
mailto:aaguilar@itorizaba.edu.mx

from a common set of core assets in a prescribed way" [1]. Software Product Lines is

a means to improve the processes of software development by reducing the cost and

substantially improving the productivity and the quality of the products developed.

For the development of a Software Product Line, a key element is the analysis, speci-

fication and management of common and variable elements within the set of products

produced by the SPL.

Frequently, Software Product Lines need to meet the changing requirements of the

market either by functionality, focus or technology and consequently, it is necessary

to add and configure new products in the SPL. However, experts in the development

of SPL recognize that they are limited and that in most cases, it is impossible to ex-

tend or adapt the platform. An alternative solution is a Multiple Software Product

Line which derives new software products from the reuse of a set of features provided

by different heterogeneous software product lines without modifying or altering the

independent operation of the same. The purpose of this study is to examine Multi

Product Lines applications in software engineering.

This document is organized as follows. Section 2 presents the research methodolo-

gy. In section , basic concepts on Multi Product Lines are explained. Application of

Multi Product Lines on different domains is shown in section

multi product lines in the field of software engineering are presented in section

 Challenges faced by

Section 6 presents the discussion. Finally, conclusions are presented in section 7.

2 Research methodology

The methodology is composed of three stages. The first stage was the research of

works related to Multiple Software Product Lines in several databases of scientific

journals. The second concerned the classification of these works in the different fields

of knowledge. Finally, the third stage of the methodology involved the report of de-

tailed literature review that identifies challenges addressed and technologies, tools and

programming languages used in the implementation of the proof of concept applica-

tions in some of the reported works. For this review, we first searched in the major

databases of electronic journals for a comprehensive bibliography of relevant research

of MPL. The digital libraries considered were: (1) ACM Digital Library, (2) CiteSe-

erX, IEEE Xplore Digital Library, IGI Global, ScienceDirect (Elsevier), Semantic

Scholar and SpringerLink.

3 Application of Multi Product Lines on different

domains

Nowadays, there are many examples that illustrate the original idea of using MPLs,

among which stand out mainly in the metallurgy, steel industry and mechatronics

systems.

118 G.I. Trujillo-Tzanahua et al.

3,

4.

5.

3.1 Metallurgy

In Metallurgy, alloys are a good example to achieve special desired properties by

combining different metals. For copper to be versatile, its characteristics are modified

through mixing with other metals depending on the desired end use. From this mix-

ture, it is possible to obtain more than 400 alloys, such as bronze, brass, alumni

bronze. Another alloy identified is derived from nickel and steel and is known as In-

var or FeNi36. Invar is used in the manufacture of precision parts such as watch-

making, apparatus of physics, the valves of engines, among others and in instruments

for measuring length such as those used in topography due to its small coefficient of

expansion. This notion of combining, integrating or composing different approaches

motivates the approach called Invar (Integrated View on Variability) [2, 3] for the

development of software using multiple product lines. Invar facilitate the exchange of

heterogeneous models of variability during the configuration of the product regardless

of the techniques, notations and tools used in the organization.

3.2 Steel Industry

Another example of implementation of MPLs occurs in the Steel industry, specifi-

cally in the mini-mills that make up the product portfolio of SIEMENS VAI [4–7].

Unlike the integrated steel mill, the mini-mill is a facility that produces steel products

using scrap steel as an iron source. A mini-mill is integrated by several product lines

such as the electric furnace, the caster, the rolling mill, and the maintenance and setup

system (MSS), a software tool used by customers for customizing the mini-mill soft-

ware solution during operation. Although the mini-mill is subject to the same re-

quirements that the integrated steel mill differs in that the plant is flexible with ability

to be upgraded technically, diversity in the styles of management, labor relations and

markets for the product. A mini-mill and the different subsystems can be customized

in terms of the amount of iron, furnace type, number of filaments, type of lamination

train or lamination capability.

3.3 Mechatronics systems

Mechatronics combines various disciplines as mechanical engineering, electronics,

automatic control and software for the design of products and processes. Mechatron-

ics systems have several applications: robotics, aeronautics, automotive industry,

medical industry, home automation, among others. In the field of mechatronics,

products are described by multiple models belonging to different engineering domains

such as mechanical, electrical, and electromechanical. In medical domain, multiple

product line development is identified for Philips Medical imaging systems through

hierarchical product lines [8]. Typically, several product lines are available because

products are developed in different parts of the world, and within different product

groups such as magnetic resonance, X-ray, and ultrasound tomography. To handle the

complexity in product lines for mechatronic systems, in [9] is proposed a MPL ap-

Multiple Software Product Lines: applications and challenges 119

proach to distinguish between software and hardware by using different feature mod-

els for each.

Table 1 shows the analysis of four different domains of MPL application reported

in the literature. This table highlights the main similarities and differences in the MPL

applied to the industry for the manufacture of physical products and software prod-

ucts. It is important to note that in an MPL applied to the manufacturing industry,

production capacity is considered because it defines the competitive limits of the

company since the quantity of products or services that can be obtained by a period of

time depends on demand and company infrastructure. While the capacity of an MPL

in the context of software is unlimited because it can generate n software products.

Both industrial or software MPLs agree that it is possible to involve different suppli-

ers, obtain different versions of products (variability) and reuse processes and tools.

Another aspect to highlight in MPL in the context of software is that similar to Soft-

ware Product Lines not only takes care of generating software product but also gener-

ates requirements, code, architecture, tests, documentation.

Table 1. Analysis of application domains

MPL is a multi-domain approach that arises to develop large and complex systems

through several independent product lines which are developed by several organiza-

tions with different approaches and technologies for different geographic areas and in

any context. This approach is investigated for the development of Systems of Sys-

tems (SoS) [5, 10] and Software Ecosystem (SECO) [11, 12] that result from the inte-

Element Domains

Domain Metallurgy Steel Industry
Mechatronics

systems
Software Engineering

Assets Metals Scrap steel
Hardware

Software

Reuse

Process,

machines and

tools

Process, machines

and tools

Process, machines

and tools

Process and software

tools

Providers Several Several Several Several

Variability Yes Yes Yes Yes

Production

Capacity

Limited by

infrastructure

Limited by

infrastructure

Limited by

 infrastructure

Unlimited but depends

on product configuration

Line

Balancing
Yes Yes Yes Yes

Application Alloys Mini-mill

Philips Medical

Imaging Systems,

Aselsan REHIS

SECO, SOS, ERP,

Software Supply Chain,

120 G.I. Trujillo-Tzanahua et al.

Software artifact

equirements, feature

model, architecture,

libraries, test.

 and such

as r

gration of several operationally independent systems. The feasibility of the approach

and its implementation could be useful for implementation of ERP systems [2] or

software supply chains[13].

4 Multiple Software Product Lines

Software artifact reuse from different software product lines, referred to as multi

product lines [14, 15] is addressed by several authors [16–18]. The reuse and compo-

sition of multiple software product lines is also known as Nested Software Product

Lines [19, 20], Hierarchical Product Lines or Composite Product Lines.

A Multiple Software Product Line (MSPL) also called Multi Product Line (MPL)

is a software product line that results from combining components or products devel-

oped from several independent and heterogeneous software products lines [15]. It

means that software product lines are provided by different organizations and use

diverse approaches and technologies.

According to Holl [14], an MPL is ”a set of several self-contained but still interde-

pendent product lines that together represent a largescale or ultra-large scale system”.

 Multi Product Line configurator is an assembly entity that is responsible for con-

trolling and reusing the artifacts of software product lines according to the needs of

stakeholders (see Fig1). Given the need to combine, integrate or compose different

software product lines, the inclusion of different approaches to model variability,

annotations and tools is detected.

Fig. 1. Multi Product Lines

Multiple Software Product Lines: applications and challenges 121

The decision of using a traditional approach or mass production through SPL or MPL

for software development depends on requirements such as: reusing components,

implementing non-functional requirements, launching or modifying a product to focus

on a different market segment, acquisition of a competitive advantage, incorporation

of new technologies (hardware, software), resource sharing, among others [21].

5 Challenges

Some of the general challenges faced by multi product lines in the field of software

engineering are presented below.

5.1 Software Product Lines Reuse

Reuse in Multi Product Lines refers to the process of deploying or upgrading software

systems using existing software assets across multiple software product lines. This

results in a composition of SPLs that facilitates to reuse SPLs within other SPLs.

Consequently, techniques, methods or approaches are required to facilitate and max-

imize the reuse of artifacts from software product lines to generate valid product fami-

lies in a Multi Product Line [22–24]. Likewise, the fusion and reuse of feature mod-

els provided by different companies or suppliers are required. The degree of reuse

depends on the scope of the available SPLs, so for the development of an MPL not

only reuse the implementation but it is possible to reuse processes, tools, require-

ments, tests, technologies.

5.2 Interoperability between software product lines

Interoperability refers to the ability of two or more systems or components to ex-

change information and use the information exchanged. In an MPL, the interoperabil-

ity and the integration of software product lines and their products must be facilitated

[24, 25]. An adequate interoperability is useful to promote cooperation between inde-

pendent systems in order to integrate them as a System of Systems [5, 10] or Soft-

ware Ecosystem [11, 12] and provide more complex functions.

5.3 MPL Reference Architecture

Reference Architecture is a type of software architecture that captures knowledge and

experience about how to structure architectures of software systems in a domain. Its

purpose is therefore to be a guidance for the development, standardization, and evolu-

tion of systems of a single domain or neighbor domains for example Autosar (AU-

Tomotive Open System Architecture Open Systems) for the Automotive sector. One

or more reference architectures could be used as a basis of MPL. In an MPL, is neces-

sary to define a reference architecture or consistent MPL architecture [26] that repre-

122 G.I. Trujillo-Tzanahua et al.

sents the common and variable artifacts of the software product lines available for

incremental product development.

5.4 Automating product derivation in MPL Engineering

Product derivation in an MPL refers to complete process of building a product

through the software assets of many software product lines. Automating the deriva-

tion of the product means automating this building process. The subprocesses of

product derivation are product configuration and product generation.

Product configuration in an MPL is a process of collaboration between different peo-

ple and teams with different knowledge regarding the domain, notations and pro-

gramming languages used in the development of software product lines. Problems

arise at the moment of making the decisions to assign the interested parties in the right

order and at the right time based on the knowledge of the domain of the people.

Generating products in an MPL relies on a configurator to make decisions, taking as

input the configuration to build the final product (or parts of it, such as executables,

documentation, tests, and so on).

5.5 User Guide on Product Derivation

During the derivation of products in an MPL, it is necessary to ensure that the multi-

ple users involved in the configuration and generation of products are aware of the

chosen decisions [4]. For this reason, users need to be aware of the variability and

dependencies between software product lines.

5.6 MPL tools

Supporting tools offer the developers a complete environment for development and

maintenance of software product line, aiming at facilitating its adoption. Although

there is a huge variety of tools for software product lines development, it is not possi-

ble to ensure that all needs of SPL engineers are being fulfilled. It is necessary to

better investigate the scope, the availability and the utility of these tools for MPLs

development. For this reason, SPL engineers need to adapt and extend of software

product line tools for feature modeling, SPL composition, variability management,

configuration and derivation of products in an MPL. In addition, tools are required to

facilitate automated analysis of dependent features models.

Another aspect that stakeholders need to consider for MPL implementation is the use

of different approaches in individual software product lines such as Feature-oriented

Programming (FOP), Aspect-Oriented Programming (AOP) and Delta-oriented Pro-

gramming (DOP).

Multiple Software Product Lines: applications and challenges 123

6 Discussion

Multi Product Lines are successfully used in domains such as metallurgy, steel in-

dustry, mechatronics systems and software (Section

firmed that Multi Product Lines approach is a feasible option for software mass cus-

tomization. This is because the principles used in other areas mainly in the metallur-

gical industry, steel industry, mechatronic systems are completely applicable to soft-

ware development in order to optimize the individual systems development by taking

advantage of their common features and managing their differences.

In the software industry, MPLs emerge as a flexible and viable development para-

digm that enables companies to enhance their products from reusing and mass cus-

tomization to a rapid market introduction, reducing costs and maximizing quality of

products.

Currently, several approaches and proposals that support the development of soft-

ware using MPLs are reported. However, as mentioned in Section

ware context present certain limitations and challenges that need to be addressed.

Also, several areas of opportunity were identified in this field of research since the

use of MPL depends mainly on the capabilities of the development team, market and

technologies.

5, MPLs in soft-

7 Conclusion

This study addresses the main aspects necessary to understand the importance of

multi product lines and its application in the field of software engineering. Multi

product line is an area with a great potential of applications in the field of software

engineering, particularly in the study of software development processes. In addition,

the different challenges and problems faced by multi product lines are identified.

The current study on Multi Product Lines allowed to detect that despite the experi-

ence that has in the industry, the Software Engineering requires to meet certain chal-

lenges that arise when increasing the complexity of the systems, by addition of new

products, make updates by technology or change of requirements, all this in order to

meet the needs or expectations of the market. Also, several areas of opportunity are

detected. This work serves as a basis for future research on Multi Product Lines.

For the future work, we aim at contributing to mature the area of Multi Product

Lines and propose means to better explore the software product development using

this approach.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. (2001).

2. Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grünbacher, P., Benavides,

124 G.I. Trujillo-Tzanahua et al.

3). The results of this study con-

D., Galindo, J.A.: Configuration of Multi Product Lines by Bridging Heterogeneous

Variability Modeling Approaches. In: Proceedings of the 2011 15th International

Software Product Line Conference. pp. 120–129. IEEE Computer Society,

Washington, DC, USA (2011).

3. Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grünbacher, P., Benavides,

D., Galindo, J.A.: Integrating Heterogeneous Variability Modeling Approaches with

Invar. Proc. Seventh Int. Work. Var. Model. Software-intensive Syst. 8:1--8:5 (2013).

4. Rabiser, R., Grünbacher, P., Holl, G.: Improving Awareness during Product

Derivation in Multi-User Multi Product Line Environments. In: Proceedings 1st Int’l

Workshop on Automated Configuration and Tailoring of Applications (ACoTA 2010)

in conjunction with 25th IEEE/ACM Int’l Conference on Automated Software

Engineering (ASE 2010), Antwerp, Belgium, September. pp. 1–5 (2010).

5. Holl, G., Elsner, C., Grünbacher, P., Vierhauser, M.: An Infrastructure for the Life

Cycle Management of Multi Product Lines. In: Proceedings of the 28th Annual ACM

Symposium on Applied Computing. pp. 1742–1749. ACM, New York, NY, USA

(2013).

6. Holl, G., Thaller, D., Grünbacher, P., Elsner, C.: Managing Emerging Configuration

Dependencies in Multi Product Lines. In: Proceedings of the Sixth International

Workshop on Variability Modeling of Software-Intensive Systems. pp. 3–10. ACM,

New York, NY, USA (2012).

7. Holl, G., Grünbacher, P., Elsner, C., Klambauer, T., Vierhauser, M.: Constraint

Checking in Distributed Product Configuration of Multi Product Lines. In: 20th Asia-

Pacific Software Engineering Conference (APSEC). pp. 347–354. IEEE Computer

Society, Washington, DC, USA (2013).

8. van der Linden, F., Wijnstra, J.G.: Platform Engineering for the Medical Domain.

Presented at the (2002).

9. Brink, C., Peters, M., Sachweh, S.: Configuration of Mechatronic Multi Product Lines.

In: Proceedings of the 3rd International Workshop on Variability & Composition. pp.

7–12. ACM, New York, NY, USA (2012).

10. Klambauer, T., Holl, G., Grünbacher, P.: Monitoring System-of-Systems

Requirements in Multi Product Lines. In: Doerr, J. and Opdahl, A. (eds.)

Requirements Engineering: Foundation for Software Quality. pp. 379–385. Springer

Berlin Heidelberg (2013).

11. Urli, S., Blay-Fornarino, M., Collet, P., Mosser, S., Riveill, M.: Managing a Software

Ecosystem Using a Multiple Software Product Line: a Case Study on Digital Signage

Systems. In: Euromicro Conference series on Software Engineering and Advanced

Applications(SEAA’14). pp. 344–351 (2014).

12. Schmid, K., Eichelberger, H.: EASy-Producer: From Product Lines to Variability-rich

Software Ecosystems. In: Proceedings of the 19th International Conference on

Software Product Line. pp. 390–391. ACM, New York, NY, USA (2015).

13. Hartmann, H., Trew, T.: Using Feature Diagrams with Context Variability to Model

Multiple Product Lines for Software Supply Chains. In: Proceedings of the 2008 12th

International Software Product Line Conference. pp. 12–21. IEEE Computer Society,

Washington, DC, USA (2008).

14. Holl, G., Grünbacher, P., Rabiser, R.: A Systematic Review and an Expert Survey on

Multiple Software Product Lines: applications and challenges 125

Capabilities Supporting Multi Product Lines. Inf. Softw. Technol. 54, 828–852 (2012).

15. Rosenmüller, M., Siegmund, N.: Automating the Configuration of Multi Software

Product Lines. In: Proceedings of Fourth International Workshop on Variability

Modelling of Software-Intensive Systems. pp. 123–130 (2010).

16. Aoyama, M.: Continuous and Discontinuous Software Evolution: Aspects of Software

Evolution Across Multiple Product Lines. In: Proceedings of the 4th International

Workshop on Principles of Software Evolution. pp. 87–90. ACM (2001).

17. Aoyama, M., Watanabe, K., Nishio, Y., Yasuyuki, M.: Embracing requirements

variety for e-Governments based on multiple product-lines frameworks. In:

Requirements Engineering Conference, 2003. Proceedings. 11th IEEE International.

IEEE (2003).

18. Bühne, S., Lauenroth, K., Pohl, K.: Why is it not Sufficient to Model Requirements

Variability with Feature Models? Work. Automot. Requir. Eng. AURE04. 4, 5–12

(2004).

19. Krueger, C.W.: New methods in software product line development. In: Software

Product Line Conference, 2006 10th International. pp. 95–99. IEEE (2006).

20. Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S.,

Teixeira, E., Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S.: MobiLine: A Nested

Software Product Line for the domain of mobile and context-aware applications. Sci.

Comput. Program. 78, 2381–2398 (2013).

21. Savolainen, J., Mannion, M., Kuusela, J.: Developing Platforms for Multiple Software

Product Lines. In: Proceedings of the 16th International Software Product Line

Conference - Volume 1. pp. 220–228. ACM, New York, NY, USA (2012).

22. Rosenmüller, M., Siegmund, N., Kästner, C., Ur Rahman, S.S.: Modeling Dependent

Software Product Lines. Engineering. 13–18 (2008).

23. Altintas, N.I., Cetin, S.: Managing Large Scale Reuse Across Multiple Software

Product Lines. In: High Confidence Software Reuse in Large Systems. pp. 166–177

(2008).

24. Schröter, R., Siegmund, N., Thüm, T.: Towards modular analysis of multi product

lines. Proc. 17th Int. Softw. Prod. Line Conf. co-located Work. - SPLC ’13 Work. 96

(2013).

25. Nakagawa, E.Y., Oquendo, F.: Perspectives and Challenges of Reference

Architectures in Multi Software Product Line. In: Proceedings of the 17th

International Software Product Line Conference Co-located Workshops. ACM, New

York, NY, USA (2013).

26. Tekinerdogan, B., Erdoğan, Ö.Ö., Aktuğ, O.: Chapter 10 – Archample—Architectural

Analysis Approach for Multiple Product Line Engineering. In: Relating System

Quality and Software Architecture. pp. 263–285 (2014).

126 G.I. Trujillo-Tzanahua et al.

Automated software generation process with SPL

Jesús-Moisés Hernández-López1,1, Ulises Juaréz-Martínez2,2 and Ixmatlahua-Díaz

Sergio-David1,3

1 Instituto Tecnológico Superior de Zongolica, Veracruz, México,

2Instituto Tecnológico de Orizaba, Veracruz, México
1jesus_hernandez_pd197@itszongolica.edu.mx, 2ujuarez@ito-depi.edu.mx,

3sergio.ixmatlahua.pd169@itszongolica.edu.mx

Abstract. Software Product Line (SPL) is a set of applications with a common

architecture and shared components, with each application specialized to reflect

different requirements. SPLs manage a large number of artifacts, for each of

them it is necessary to define commonality and variability. Consequently, the

applications generation from SPL becomes complicated and it often must be

done manually. This paper shows the development of a SPL with an automated

software generation process, in which commonality and variability have been

defined for each artifact (i.e., product management, requirements, design,

realization and test). Some technologies used were: XML files, Scala, AspectJ,

Apache Maven and Junit. To automate the applications generation process, we

have developed a configurator that enables features selection for each

application and generate it in an automated way from SPL. The software

generated includes: executable and documentation. Further, we propose a

model-driven architecture for support the evolution in the SPL.

Keywords: variability, MDA, inmotic, traits, aspects, mixins

1 Introduction

 Nowadays, there is a demand for enhancing the quality of software, reducing costs

and accelerating their development processes [1]. SPLs are focused on these aspects

(i.e., quality, cost and time).

 A SPL is a set of applications with a common architecture and shared components,

with each application specialized to reflect different requirements [1]. SPL

development requires generating a large number of artifacts, such as: product

management, requirements, design and test [2]. For each artifact generated, variability

and commonality must be defined and managed. Variability defines the flexibility of a

SPL to generate products with different features and commonality defines artifacts

© Springer International Publishing AG 2018
J. Mejia et al. (eds.), Trends and Applications in Software Engineering,
Advances in Intelligent Systems and Computing 688,
https://doi.org/10.1007/978-3-319-69341-5_12

that will be reused in each application from SPL. Due to the number of artifacts, the

generation process becomes in a complicated task for developers, which many times

must be done manually. The drawback of doing it manually is that it increases the

time of software generation and there is a risk of making mistakes in the

configuration.

 In this paper, we show the development of a SPL based on features selection with

an automated software generation process. The development of this SPL was carried

out through the classic methodology for Software Product Line Engineering, in which

2 processes are distinguished: Domain engineering process.– This process is

responsible for establishing the reusable platform and thus for defining the

commonality and the variability of the product line. Application engineering process.-

This process is responsible for deriving productline applications from the platform

established in domain engineering [2]. Commonality and variability were defined

with different technologies, such as: XML files, Scala, AspectJ, Apache Maven and

Junit. To automate software generation process, we developed a configurator, which

is in charge of reusing common artifacts and exploiting variability defined in the SPL,

in order to generate complete applications (i.e., documentation and/or executable

application). The process is executed in an automated manner, based only on feature

selection. Further, we propose a model-driven architecture for support the evolution in

the SPL. To verify our approach, we choose inmotic domain as case study.

 Document is organized as follows: Section 2 presents related works. Section 3

explains the automated software generation process with a simple example. Section 4

presents a case study. Section 5 shows a proposal to support evolution in SPLs.

Section 6 summarize conclusions and future work.

2 Related works

 In [3],

Development (MDSD) and Aspect-Oriented Software Development (AOSD).

solution domain. Aspect-oriented language is useful to generate code where an

architecture doesn´t provide links.

In [4], an Aspect Oriented Analysis (AOA) on product requirements was presented

to design Product Line Architectures (PLA). AOA scheme consists of: (1)

requirements are separated in each aspect of original requirements, (2) requirements

of each aspect are analyzed and the architecture is examined for each of them, (3)

results and design options are analyzed.

In [5], an MDE (Model-Driven Engineering) and Aspect-Oriented Software

Development approach was presented to facilitate implementation, management and

traceability of variability. Features are separated into models, which are composed by

AO techniques at model level. By integrating MDSD into SPLE (Software Product

128 J.-M. Hernández-López et al.

variability was introduced through integration of Model-Driven Software

Combination of MDSD and SPL facilitates traceability from problem domain to

Line Engineering), DSL (Domain Specific Language) manages the variability with

respect to its structure or behavior.

In [6], a new approach was presented to implement SPL by fine-grained reuse

mechanisms. Featherweight Record-Trait (FRTJ) was introduced and product

functionality units are modeled with traits and records. Reuse degree of traits and

records is higher than the potential to reuse hierarchies based on standard static

classes.

In [7], an approach to facilitate variability management was proposed to model

architectures of SPLs. Domain requirements and architecture are captured into

models. For application engineering, DSL was used to specify requirements of

particular applications. AO techniques were used during the domain engineering to

modulate concerns in models, transformers, and generators.

In [8], delta-oriented programming (DOP) was proposed. DOP is a programming

language designed to implement SPLs. A delta module can add classes for products

implementation or remove classes from them. A SPL implemented with DOP is

divided into a core module and delta modules. The core module comprises a set of

classes to implement a complete product with valid feature configuration. It enables a

flexible modular implementation for product variability, starting from different core

products.

In [9], an automated assembly for domain components of a PLA was presented at

was used. Benefits obtained with MDE are: (1) improving development of PLA with

integration of modeling tools and specific domain components, (2) model-based

structures help keep stability of domain evolution in MDE-based systems, (3)

improving robustness and ability of models transformation, further debug support to

correct errors in transformation specifications.

 Related works show different approaches to manage variability and commonality

at different levels of abstraction. There are some approaches that enable managing

variability at code level, such as: aspects, traits and DOP [1] [3] [4] [5] [6]. We have

also researched approaches to manage variability at high level abstraction: for

example: MDA and AOA approaches [2] [7]. In conclusion, approaches based on

aspects enable code manipulation at compile time and traits have a higher degree of

reuse than classic class inheritance. MDA approaches support the evolution on PLA.

3 Automated software generation process

 The automated application generation process is described step by step in Figure 1

through a simple example. Step (1), the administrator of the SPL makes features

selection from features model, which is shown with a graphic interface in the

configurator. The features model was defined through Common Variability Language

(CVL) [10]. This example contains a features model with 3 features (A, B and C).

Automated software generation process with SPL 129

low level abstraction. To address this problem, Model-Driven Engineering (MDE)

 The Variability Specification Tree Resolution (VSpectree Resolution) is generated in

step (2), applying CVL rules [10] defined in the configurator. The example of Figure

1 shows a VSpectree Resolution with two features (A and C), which is a valid

selection for the features model.

 VSpectree Resolution is verified in step (3) with the configuration file based on

XML. This file contains features defined in the SPL, features definition for each

application, and location of each artifact. The example of Figure 1 shows a VSpectree

Resolution is equal to “Product 1”, defined in the configuration file.

Figure 1. Automated application generation processes

 Requirements artifacts (i.e., requirements on XML files) are reused in steps (4), (5)

and (6). Common requirements for all applications are reused directly, and specific

requirements are added depending on the application that will be generated.

Requirements artifacts are result of domain engineering process [2], which it defines

communality and variability. Figure 1 shows the configurator working like a

traceability link mechanism, linking features between “Product 1” from configuration

file until requirements artifacts. The configurator generates application requirements

in the step (6), reusing requirements with the value “Base” for the attribute condition

 .

This process is observed in Figure 2.

Figure 2. Requirements generation for “Product 1”

 Like steps (4) and (5), steps (7) and (8) work with design artifacts developed on

XML files, such as: components and class diagrams. Communality and variability

were defined using a tool called PlantUML [11]. The artifact generated by domain

130 J.-M. Hernández-López et al.

and adding requirements where the value is equal to features name ”. in “Product 1

engineering is the reference architecture. This artifact is reused for all applications of

the SPL in order to generate complete architectures for applications that will be

generated. To generate a complete architecture in step (9), application engineering

process is carried out as observed in Figure 3. The process is the following:

Configurator chooses components, interfaces and relations with value “Base” in order

to generate reference architecture. Subsequently, the configurator chooses and

assembles components, interfaces and relations, verifying that the value in condition

is equal to features name from “Product 1” from Figure 1.

Figure 3 Example of architecture generation

 Steps (10), (11) and (12) of Figure 1 are carried out in order to generate executable

applications. In step (10), the configurator is responsible for verifying whether each

trait is available, comparing traits and features defined for “Product 1” in file

configuration. If there is no problem then the process continues. The application

generation works in a systematized way from step 12. This process is shown more

broadly in Figure 4. Before starting compilation, the configurator identifies the

product that will be generated at time compile to weave aspects and traits through

Maven [12], using command “mvn install”. “AddFeatures” aspect is responsible for

assembling features “A” and “C” in the reference architecture during compilation.

Components assembly is performed by application engineering process. Finally,

whether there are no faults in the testing phase, then executable application (.jar) is

generated.

Figure 4 Applications generation process

 Steps (13), (14) and (15) are carried out in order to apply software tests for the

application configured in step (12). We have developed test suites with JUnit

framework to distinguish domain and application tests. Before executable application

Automated software generation process with SPL 131

(.jar) is generated, tests are executed by the configurator with “mvn –Dtest”

command, as observed in Figure 4. Whether there are no faults in the testing phase,

then executable application (.jar) is generated with its test report, using “mvn surefire-

report” command. Whether there are faults, the test report is also generated but the

application generation process (.jar) is aborted until it is corrected. The following is

an example of Test Suite for “Product 1” from Figure 1, in which will only execute

tests for Product 1, specifically test for A and C features.

@RunWith (classOf [Categories])
@IncludeCategory (classOf[Product1])

@SuiteClasses(Array(classOf[TestA],classOf[TestC))

class SuiteProducto7Test {}

4 Case study

 The case study chosen for this SPL was the inmotic domain. Inmotic is the

incorporation of numerous subsystems in installations of tertiary or industrial use, in

order to optimize resources, reduce costs and unnecessary energy consumption. The

reason for dealing with this domain was to get a domain in which the variability is

necessary. Examples of variability about inmotic domain, such as: sensors (e.g.,

flame, light or temperature), actuators (e.g., relays, valves or motors) and user

interfaces (e.g., TV interface, a web-based interface or mobile interface).

 Figure 5 shows features model defined with CVL [10] for the SPL. Lights feature

and device feature define a large part of commonality in the SPL. They are defined

with continuous line (i.e., mandatory features), therefore, applications generated will

always have LIGHTS feature and DEVICE feature (i.e., a microcontroller).

Variability is defined at different levels VSpectree. The most notorious variability is

defined in device feature . There are applications that work with ARDUINO and

others with RASPBERRY, but they don’t work in the same application.

.

Figure 5 Features model defined with CVL (VSpectree)

 The SPL is able to generate 8 applications for inmotic domain, which include

executable applications, requirements, design and test report. Different artifacts are

132 J.-M. Hernández-López et al.

generated for each application, however, some components are shared between them.

Two valid aplications are shown in Table 1, in which there are notable differences.

For example: application 1 doesn´t has any automation features, such as: Turn on

Lights automatically by presence sensor or turn on lights automatically by schedule.

Aplication 2 have features for light automation and other sensors, such as: flame,

humidity or gas.

Table 1. Valid applications obtained from VSpetree of Figure 5

Application 1 Application 2

Lights Lights

Turn on lights semi-automatically Turn on lights semi-automatically

Lights control by pc Lights control by pc

Lights control by switch Lights control by switch

Arduino Turn on lights automatically

Air conditioner Turn on lights automatically by

schedule

Turn on air conditioner

semiautomatically

Turn on lights automatically by

precense sensor

Air conditioner control by pc Raspberry

Air conditioner control by switch Presence sensor

Presence sensor Humidity sensor

CO2 sensor Gas sensor

Temperatura sensor Flame sensor

Infrared sensor

The reference architecture of this SPL is shown in Figure 6. Reference architecture is

an incomplete architecture that will be reused and completed to generate each

application of this SPL, as is explained in Section 3. Architectural style of the

Reference architecture is the classic client-server.Therefore, after every automated

application generation process, SPL in conjunction with the configurator will deliver

two executables (i.e., client.jar and server.jar).

Figure 6. Reference architecture of the SPL

Automated software generation process with SPL 133

Design artifacts and realization artifacts for the applications described in Table 1 are

shown to observer the reuse of the same components and differences between them

traits called “Light”, “allData”, “Presence”,”Temperature”, “Flame”, “Gas”and

“Humidity” creating mixin composition . Subsequently, the aspect called “Access”

inherits the trait “Features” configured to add it in the reference architecture to

generate the application architecture of the application 2.This process is generated at

binary level by the configurator, which is explained in Section 3.

Figure 7. Combination of aspects and traits to configure Application 2

Coming up next is a fragment of the configuration for some features in Application 1.

In this code is shown the reuses of “Presence”, “Light” and “Temperature” traits. The

“AirConditioner”, and “Infrared” assembly is equally performed for the 8

applications from SPL. The “AccessAspect” aspect inherits “Features” trait and with

a cutting weaves the full functionality where the Pointcut has indicated.

trait Features extends Light

with AirConditioner

with Presence

with Temperatura

With Infrared

with CO2

with Arduino{}

@Aspect

class AccessAspect extends Features {}

@Pointcut("call()) && args()

def configure() = {}

@Around()def configureOpt() = {}

134 J.-M. Hernández-López et al.

caused by variability. Figure 7 iagram class, in which
 Trait called ” Features” inherits functionality from configurated observed in Table 1., as

 shows a d application 2 is

5 MDA to Support Evolution in SPLs

 Our proposal to address problems in terms of evolution was represented through

two models of MDA approach: Platform-Independent Model (PIM) and Platform-

Specific Model (PSM). PIM will represent all elements of the SPL at high level

abstraction, without indicating technologies. PIM can be observed in Figure 9.

Coming up next PIM elements are described:

Domain. - Corresponds to market segment for one SPL.

Features model. - There are different languages to model features. PIM does not

indicate any specific language.

Features selection. - This concept will get a model features instance.

Platform. – It contains artifacts obtained from domain process and application process

Configurator. - It's responsible to generate applications using automatically artifacts

(i.e., domain artifacts and application artifacts). Also, it allows verify all domain

artefacts, before generating applications.

Domain or application artifacts. - They are artifacts generated by the configurator.

Figure 8 PIM to PSM

From PIM, is possible obtaining one or more PSMs, showing a projection of the PIM.

PSM generation is based on transformation rules established in the PIM. The PSM

generated in Figure 8 shows a model with elements of a SPL for inmotic domain.

In this way is possible generating others PSMs for different domains.

6 Conclusions and future work

The application engineering process [2] was automated by the configurator, which is

responsible to generate artifacts for 8 applications from SPL. Commonality and

Automated software generation process with SPL 135

variability of the SPL was managed at different levels of abstraction with

technologies quite flexible. Aspects and traits allow weaving binary code at specific

points of the reference architecture to configure applications. MDA was used to

propose a PIM to support evolution in SPLs, thinking not to depend on technology,

but rather to adapt to unexpected changes. PSMs generated from PIM will be

constantly changing at technological level but without modifying the PIM, this way,

comparative nor statistical, it is quite remarkable that the automated software

generation process from SPL reduces time to generate software instead of manually

configuring it. An automated software generation from this SPL takes about 10

minuts, depending the number of features chosen for one application. The software

quality increases also due to the constant work with the same software components,

further, test reports generated indicate whether the software has bugs and where they

were located. Future work will be intended to perform a comparative and statistical

analysis of advantages and disadvantages between manual processes and automated

process to generate applications, and to evaluate attributes focused on time and

quality. It will also increase the number of applications to the product portfolio [2] of

the SPL.

Reference

1. Sommerville, I.: Software Engineering 9th ed, (2010)

2. Van Der Linden, F., Pohl, K.: Software Product Line Engineering: Foundations, Principles,

and Techniques. In: Springer Science Business Media, (2005)

3. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and model-

driven software development. In: Software Product Line Conference, 2007. SPLC 2007.
11th International, pp. 233-242 IEEE, (2007)

4. Kishi, T., Noda, N.: Aspect-oriented analysis for product line architecture. In: Soft-ware
Product Lines pp. 135-145, Springer, (2000)

5. Groher, I., Voelter, M.: Aspect-oriented model-driven software product line engi-neering.

In: Transactions on aspect-oriented software development VI pp. 111-152, Springer, (2009)
6. Bettini, L., Damiani, F., Schaefer, I.: Implementing software product lines using traits. In:

Proceedings of the 2010 ACM Symposium on Applied Computing pp. 2096-2102, ACM,

(2010)
7. Groher, I., Voelter, M., Schwanninger, C.: Integrating Models and Aspects into Product

Line Engineering. In: SPLC pp.355, (2008)

8. Schaefer, I., Bettini, L., Bono, V., Damiani, F., & Tanzarella, N. (2010, September). Delta-

oriented programming of software product lines. In International Conference on Software

Product Lines (pp. 77-91). Springer Berlin Heidelberg.

9. Deng, G., Schmidt, D. C., Gokhale, A., Gray, J., Lin, Y., Lenz,G.: Supporting Evolution in
Model-Driven Software Product-line Architectures. In: ACM SIGSOFT Software
Engineering Notes, ACM, (2007)

10. CVL Submission Team: Common variability language (CVL), OMG revised sub-
mission ,(2012)

11. PlantUML, http://plantuml.com/

12. Maven, I.: Apache maven project, (2011)

136 J.-M. Hernández-López et al.

the evolution models. Although the goal of this paper neither will be in both

	Introduction
	Organization
	Contents
	Organizational Models, Standardsand Methodologies
	ISO/IEC 29110 and curricula programs related toComputer Science and Informatics in Mexico: Analysis ofpractices coverage
	1. Introduction
	2. Background
	3. ISO/IEC 29110
	4. Methodology for the analysis of curricula programs
	5. Results
	6. Conclusions
	References

	A Means-Ends Design of SCRUM+: an agile-disciplinedbalanced SCRUM enhanced with the ISO/IEC 29110Standard
	Abstract
	Keywords
	1 Introduction
	2 Research Process
	3 Theoretical Background
	4. A Means-Ends Design of SCRUM+
	5. Conclusions
	References

	Formalizing a Cost Construct Model related to theSoftware Requirements Elicitation Techniques
	1 Introduction
	2 Related Work
	3 Research Methodology.
	4 Development of the Cost Model
	5 Conclusions
	References

	WYDIWYN – What You Define, Is What You Need:Defining Agile/Traditional Mixed Methodologies
	Abstract
	Keywords
	1 Introduction
	2 Background
	3 Difficulty
	4 WYDIWYN -What You Define, Is What You Need-: DefiningAgile/Traditional Mixed Methodologies
	5 Conclusions and future work
	References

	Project Portfolio Management in Small Context inSoftware Industry: A Systematic Literature Review
	Abstract.
	1 Introduction
	2 Background
	3 Research Protocol
	4 Results Discussion
	5 Conclusion and future work
	Acknowledgements
	References

	Practices for Addressing Environmental Sustainabilitythrough Requirements Processes
	Abstract
	Keywords
	1 Introduction
	2 Related Work
	3 Method to Map Sustainability Requirements Techniques withSoftware Processes
	4 Results
	5 Discussion
	6 Conclusions
	References

	Integrated IT Governance and Management Model:Evaluation in a Developing Country
	Abstract
	Keywords
	1 Introduction
	2 Background and related work
	3 Methodology
	4 Design Phase: Integrated Model for ITG/ITM
	5 Evaluation Phase: Applying the Model in Cases Studies
	6 Discussion and conclusions
	References

	Analysis of environmental factors in the adoption ofISO/IEC 29110. Multiple case study
	Abstract
	Keywords
	1 Introduction
	2 Background
	3 Research methodology
	4 Analysis units
	5 Analysis and results
	6 Final discussion and future work
	References

	A Theoretical Analysisof Digital Marketing Adoptionby Startups
	Abstract.
	1. Introduction
	2. Theoretical Framework
	3. Digital Marketing Adoption
	4. Results Analysis
	5. Final Considerations
	References

	Financial impact on the adoption of software validationtasks in the analysis phase: A business case
	Abstract
	Keywords:
	1 Introduction
	2 Background
	3 Unit of Analysis
	4 Research Method
	5 Results and analysis
	6 Discussion, Conclusions and Future Work
	References

	Multiple Software Product Lines: applications andchallenges
	Abstract
	Keywords
	1 Introduction
	2 Research methodology
	3 Application of Multi Product Lines on differentdomains
	4 Multiple Software Product Lines
	5 Challenges
	6 Discussion
	7 Conclusion

	Automated software generation process with SPL
	Abstract
	1 Introduction
	2 Related works
	3 Automated software generation process
	4 Case study
	5 MDA to Support Evolution in SPLs
	6 Conclusions and future work
	Reference

	Systematic Review: Cybersecurity Risk Taxonomy
	Abstract
	Keywords
	1 Introduction
	2 Context
	3 Systematic review
	4 Analysis and interpretation of the results of the systematic review
	5 Results report of systematic review
	6 Conclusions

	Soft Skills for IT Project Success: A SystematicLiterature Review
	Abstract
	Keywords
	1 Introduction
	2 Background
	3 Systematic Literature Review
	4 Results
	5 Conclusions and Future Work
	References

	Knowledge Management
	Architecture for the integration of Linked Open DrugData in an Augmented Reality application for mobiledevices
	Abstract
	Keywords
	1 Introduction
	2 Related Work
	3 Architecture description
	4 Case Study: Search a drug's information in an RDF datasetof the LOD cloud
	5 Conclusions and Future Work
	6 Acknowledgements
	References

	An Architecture based in Voice Command Recognitionfor faceted search in Linked Open Datasets
	Abstract.
	Keyword
	1 Introduction
	2 Related Works
	3 Architecture
	4 Case Study
	5 Conclusions and Future Work
	Acknowledgments
	References

	Engineering Organizational Absorptive Capacity forEffective Knowledge Transfer
	Abstract
	Keywords
	1 Introduction
	2 On the absorptive capacity (ACAP) construct
	3 Methodology
	4 Configuration of the Organizational Absorptive Capacity
	5 Results and analysis
	6 Conclusion
	7 Further research
	7 Acknowledgments
	REFERENCES

	Decision-Support Platform for Industrial RecipeManagement
	Abstract
	Keywords
	1 Introduction
	2 State-of-the-art
	3 Methodology
	4 Results
	5 Conclusions
	References

	SmartLand-LD: A Linked Data approach forIntegration of heterogeneous datasets to intelligentmanagement of high biodiversity territories
	Abstract
	Keywords
	1 Introduction
	2 Smart Management of Territories
	3 About the SmartLand Initiative of UTPL
	4 Data Interoperability and Semantic Web
	5 The SmartLand-LD Approach
	6 Conclusions and Future Works
	References

	Software Systems, Applicationsand Tools
	Usability analysis: Is our software inclusive?
	Abstract
	Keywords
	1 Introduction
	2 Usability factors
	3 Related work
	4 Usability metrics
	5 Open challenges
	6 Conclusions and future work
	References

	Software testing education through a collaborativevirtual approach
	Abstract
	Keywords
	1 Introduction
	2 Related Work
	3 Characteristics of the developed CVE
	4. Context of the experiment
	5. Analysis and results
	6. Discussion
	7. Conclusions
	Acknowledgments
	References

	3D objects' shape relevance for saliency measure
	Abstract
	Keywords:
	1 Introduction
	2 A measure for saliency by shape
	3 Experimental evaluation of the shape saliency metric
	4 Results and Discussion
	5 Conclusions
	Acknowledgements
	References

	Towards Detecting MVC Architectural Smells
	Abstract
	Keywords
	1 Introduction
	2 MVC Architectural Style and Related Smells
	3 MVC Code Sniffer
	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Information and CommunicationTechnologies
	A Brief Review on the Use of Sentiment AnalysisApproaches in Social Networks
	Abstract
	Keywords
	1 Introduction
	2 Research Methodology
	3 Classification of Research Papers
	4 Findings
	5 Conclusions and future work
	6 References

	Impact of organizational and user factors on theacceptance and use of project management software inthe medium-sized company in Lima
	Abstract
	Keywords
	1 Introduction
	2 Background
	3 Research protocol
	4 Survey Results
	5 Testing the Research Hypotheses
	6 Discussion, conclusions and future work
	Acknowledgements
	References

	A Lean mind-set on the Information Technologiessector: Targeting and addressing waste for an increasedperformance
	Abstract
	Keywords
	1 Introduction
	2 From manufacturing to IT – an introduction to Lean IT
	3 Research Methodology
	4 Opportunities for improvement from the case at study
	5 Applying a Lean IT concept of Waste - DOWNTIME
	6 Conclusions
	7 Threats to Validity
	8 Opportunities for future research
	References

	Simulation and path planning for quadcopter obstacleavoidance in indoor environments using the ROSframework
	Abstract
	Keywords
	1 Introduction
	2 Robotic Software Framework
	3 Navigation algorithm
	4 Experiments and results
	5 Conclusions
	References

	Author Index

