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A Survey of Naturalistic Programming Technologies
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Mainly focused on solving abstraction problems, programming paradigms limit language expressiveness,
thus leaving unexplored natural language descriptions that are implicitly expressive. Several authors have
developed tools for programming with a natural language subset limited to specific domains to deal with
the ambiguity occurring with artificial intelligence technique use. This article presents a review of tools and
languages with naturalistic features and highlights the problems that authors have resolved and those they
have not addressed, going on to discuss the fact that a “naturalistic” language based on a well-defined model
is not reported.

CCS Concepts: • Software and its engineering → Very high level languages; Syntax; Semantics; •
Theory of computation → Grammars and context-free languages;

Additional Key Words and Phrases: Naturalistic programming, controlled natural english, expressiveness,
automatic source code generation

ACM Reference format:

Oscar Pulido-Prieto and Ulises Juárez-Martínez. 2017. A Survey of Naturalistic Programming Technologies.
ACM Comput. Surv. 50, 5, Article 70 (September 2017), 35 pages.
https://doi.org/10.1145/3109481

1 INTRODUCTION

For many years, researchers have sought to use natural languages (NL) in the development of soft-
ware; however, they have had to face the fact that computers cannot deal with the ambiguity that
traditional programming languages resolve with formal specifications. While the human cogni-
tive process helps us to resolve ambiguity, computers lack this ability, thus comprising the main
gap between natural languages and those used in software development. The Cognitive process
helps humans to understand and distinguish not only verbs from nouns but also meaning in a
particular context (Liblit et al. 2006). As a solution, several authors propose various ways of ob-
taining a natural-like programming language that is also restricted enough to be formalized to be
processable by computers.

In recent years, the gap between humans and computers has been reduced through the emer-
gence of various paradigms, languages, and tools that facilitate software development. Despite
these technological advances, limitations remain that affect software maintenance and evolution.
The first problem comes when, to read programming, programmers must learn to understand
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code written by others, where, self-documented code aside, the best scenario is code accompanied
by detailed documentation about how it works and clear description of every line. Lacking the
required discipline or working under tight delivery schedules, many programmers see this as a
waste of time and prefer to document code solely when they think it necessary, meaning that
this ideal scenario often does not always occur. Furthermore, ideas must generally be adapted to
a specific programming language and even a specific paradigm. The second problem is the lack
of expressiveness that would enable the description of abstractions from a particular domain,
which domain-specific languages (DSL) deal with by enabling specific tasks to be translated
into general-purpose languages (GPL) and domain abstractions to be interpreted easily. The
third problem stems from the inability to correctly and flexibly interpret abstractions, which is
addressed by new paradigms that treat correctness and flexibility separately. The main challenge
to improving GPL expressiveness is keeping them generic enough to encompass all domains,
while also maintaining clearly defined abstractions.

Although DSLs are expressive, they are focused on a particular domain; on the other hand,
GPLs cover all domains with relative efficiency but lack the expressiveness of DSLs. Based on the
idea that natural languages refer not only to abstractions but also the language structure itself,
naturalistic programming can be used with existing paradigms to describe instructions in a more
expressive way. In Pane (1996), authors present a report describing various problems that novice
programmers report having to deal with when learning to program, and, having found no for-
mal and organized research in this area, performed an extensive review, with the main problem
identified being the match between the system and the real world. Authors found that a program
designer must choose a correct anaphor consistent between the real world and the domain prob-
lem, while users generally experience problems attempting low-level compositions due to psy-
chological problems such as code synthesis or apparently unrelated primitives. Moreover, natural
language users generally avoid describing situations that are expected to be inferred, and prefer a
“go to,” such as notation for bifurcations, preferring to repeat an instruction N times rather than
use iterations. This article reviews proposed and commercial languages that cover several natu-
ralistic approaches. Section 2 describes fundamental concepts, while Section 3 analyses reported
technologies with naturalistic elements, and Section 4 performs an analysis of naturalistic tech-
nologies. Section 5 presents the open issues that need to be researched to improve naturalistic
programming, and, finally, Section 6 presents the conclusions of this study.

2 BACKGROUND

As the first programs were written with binary numbers, their expressiveness was null. To solve
this problem, an intermediate language that gives meaning to those instructions was found, thus
giving birth to assembler languages, which enabled programmers to create programs with which
they could manipulate variables and record that which they then translated to executable code.
The expressiveness level at the time was insufficient for programmers to break down its ideas to
convert them into instructions. The so-called third-generation programming languages were cre-
ated to solve this problem through the use of verbs, which are natural language concepts that
represent the concrete task that a program performs. Later, object-oriented programming (OOP)
languages used nouns as instance identifiers, objects, which enable programmers to define real-
world abstractions that perform specific tasks defined by verbs. Thus, programmers were then
able to work with simple sentences (Booch et al. 2007).

Naturalistic programming is related to linguistic elements, such as deixis and complex phrases,
which are taken to provide a level of expressiveness that is closer to natural language. The follow-
ing section describes these concepts.

ACM Computing Surveys, Vol. 50, No. 5, Article 70. Publication date: September 2017.



A Survey of Naturalistic Programming Technologies 70:3

2.1 Naturalistic Programming

In Lopes et al. (2003), authors define naturalistic programming as the use of natural languages
elements to design more expressive programming languages from a human perspective. In the
same article, they address the advantages and disadvantages of using programming languages and
natural languages for software development, proposing, as a solution, a median point—a formal
programming language that possesses elements of natural languages, such as anaphoric references.
The Oxford English Dictionary (Press 2016) defines “Naturalistic” as

Copying the way things are in the natural world.

From this definition, a naturalistic thing can be inferred as being artificial and designed to be
similar to its natural counterpart. Programming languages are not designed to be similar to natural
languages, instead designed to be representations of formal models that enable a computer to
process instructions.

According to Clark et al. (2010), another detail to be considered is that a programming language
is based on a formalized natural representation that could be classified in two categories: formal-
istic or naturalistic.1

A language is naturalistic when it represents more simple natural language, while it is formalis-
tic when it represents a formal and deterministic implementation of natural language. Formalistic
languages reduce ambiguity to a minimum, while naturalistic languages maintain ambiguity and
resolve it in a number of different ways. The aim of formalistic languages is to be correctly un-
derstood by users, while naturalistic languages aim to be interpreted by computers dealing with
ambiguity through heuristic translations to eventually give support to a full natural language.

Finally, programmatic semantics are procedural relations inferred from linguistic structures (Liu
and Lieberman 2005b). Nouns are associated with data structures, verbs with functions, and ad-
jectives with properties (Mihalcea et al. 2006). The principles of programmatic semantics are as
follows: syntactic features that provide differentiation between nouns and verbs and enable the
semantic understanding of an expression; procedural features that consist in how to express rules
for conditionals, iteration, or recursion and are divided into subjunctive and conditionals, possibil-
ity, and the concept of “how,” which works as a base to create conditional expressions; relational
features and set theory, represented as grammatical constructions that enable the description of a
set of steps and loops; and, representational equivalence, which enables entities to be represented
through narrative.

2.2 Deixis

The Oxford English Dictionary defines “deixis” as

The function or use of deictic words or expressions whose meaning depends on
where, when, or by whom they are used.

The term Deictic indicates that a sentence or phrase depends on the context in which it is used.
For example, in the sentence the list is complete, a list is described, but its meaning depends on
the context in which the sentence is used, thus the list could be a guest list, a data structure, or a
shopping list. Deixis is present in virtually every natural language of the world, because it enables
the expression of ideas and reduces word number to a minimum. Such sentences will contain
ambiguity that humans resolve through the use of their cognitive process, unconsciously, using
reasoning to complement partial ideas (Liblit et al. 2006). Deixis is related to ellipsis,2 because we

1In Clark et al. (2010), authors use “formalist” and “naturalist” instead of “formalistic” and “naturalistic.”
2Ellipsis is defined as the omission of words without losing the context of the sentence (Lobeck 2007).
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omit redundant words to produce sentences such as I will go to the classroom and you too, from
I will go to the classroom and you will go to the classroom too, thus shortening sentences without
losing semantic meaning.

Jaaa is a programming language that uses anaphora in a concrete and particular manner. Jaaa
was born as a Java dialect that uses an anaphor limited to one parameter per method (Lohmeier
2011). The author defines direct anaphora as a reference to a previously described element, where,
for example, it or those would address elements such as the hard disk, if it had previously been
mentioned. On the other hand, he defines an indirect anaphora as a non-explicit textual relation-
ship found in the user’s mental model, with an expression such as a computer part implied by the
hard disk.

Through deixis, we replace the signifier3 with a generic meaning that varies according to a
particular context, thus ambiguous but shorter sentences are used even when the context depends
on the direct reference and its associated referent.

Another feature of indirect references is the ability to describe things not only in space, but also
in time, which has been dealt with by logic programming as an extension where several languages
provide temporal features to enable the verification and specification of programs in terms of time
(Gaintzarain and Lucio 2009). The following temporal unary operators are described: always in-
dicates a condition that is forever true; next indicates a condition that is true in the incoming
state; eventually indicates a condition that must be true some time in a future state; and all indi-
cates a condition that is forever true (like always). The binary operators until and release are also
described.

Moreover, modal extensions that include possibility and necessity are reported and are used in
mathematics and artificial intelligence.4

2.2.1 Endophora. An endophora is an indirect reference defined in the same text and is divided
into two classifications: anaphora and cataphora.

—Anaphora. Indirect reference whose referent has been previously defined in the same text:
“Take the key, use it in the lock.”

—Cataphora. Indirect reference whose referent is subsequently defined in the same text: “After
taking it, use the key in the lock.”

2.2.2 Exophora. Exophora is something defined in another text, a particular type of which,
called a homophora, is a reference that depends on a particular context. One example is the In-
teger type, which is conceptually defined as a data type used to manipulate integer numbers, but
with particular features that depend on a specific programming language or the machine in which
a program is executed.

2.3 Expressiveness

The Oxford English Dictionary defines expressiveness as

Showing or able to show your thoughts and feelings.

Expressiveness, therefore, is a natural language feature that allows us to describe ideas as
precisely as we want. In contrast with natural language, GPLs use formal specifications that, as

3In semiotics, a signifier describes a sign component, which is a conjunction of three elements: referent, which is a real or
abstract thing; signifier, which is the referent in the symbolic representation relation; and, signified, which is the mental
idea to which the referent corresponds (Ogden et al. 1923). However, Ferdinand de Saussure says that, as there are signs
without referents, he only considers signifier and signified (De Saussure 1916).
4In Orgun and Ma (1994), an analysis of temporal logic, modal logic and multi-modal logic is presented.
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formalized languages, lack the expressiveness of natural language. While DSLs enable a higher
level of expressiveness, these are limited to particular domains. DSLs are not programming
limited, but they do help non-programmers to develop domain-specific tasks without having
to deal with GLPs and use particular-domain elements. In van Deursen et al. (2000), authors
report 75 DSL-related publications about programming, software engineering, multimedia, and
telecommunication.

The most notable barrier to human communication is the fact that there is no single language in
the world, which has led to the creation of various controlled English languages since 1930. These
languages, covering diverse areas such as manuals for construction tools or commercial aviation,
have the common feature of being controlled versions of the English language that release users
from ambiguous elements and regionalisms. As these languages are limited to particular areas,
they employ the slang used in their domains to avoid misunderstanding.5

In O’Brien (2003), eight controlled English languages were reviewed to extract a common set of
rules, from which the authors identified just one as a human-oriented controlled language (HOCL)
with the rest identified as computer-oriented controlled languages (COCL). As a result, the follow-
ing classification for three types of rules is presented:

—Lexical. Focused on choosing words and how meaning is affected.
—Grammatical. Focused on affecting syntax.
—Textual. Focused on affecting design or word information (structural) or affecting text pur-

pose and user response to it (pragmatic).

As a result, all eight of these languages share only 1 rule from the 61 obtained, while 7 common
rules are shared by at least 4 of them.

In Miller (1981), the author describes how natural language specifications are translated into
programming expressions in his study.

Miller concludes the following: natural languages do not possess the explicit declarations of pro-
gramming languages; natural languages have implicit references, while programming language
references are explicit; indexing in natural languages occurs using words such as “previous” and
“next,” while this is performed in programming languages using numbers and variables; program-
ming languages have explicitly defined format specifications while natural languages are contex-
tual; and, there is a high volume of defined data in programming languages, while there is no
distinction between them in natural languages.

In reference to control structures, Miller concludes the following: the extent of control structures
is a major factor in programming languages but rare in natural languages; conditional blocks are
a major factor in programming languages, while natural languages only function with “if-then”
conditions, thus avoiding the “else” part; programming languages possess mechanisms that detect
exceptions, mechanisms that are not present in natural languages; natural languages have lin-
ear block structures, while programming languages feature recursion, co-routines, and non-linear
structures, among others; natural languages have structure calls as a major control mechanism,
which are specified by context, while, in programming languages, these are frequent and com-
pletely specified; and, in natural languages, the argument passing feature is implicit, while it is
explicit in programming languages.

Miller concludes the following about the general features of languages: programming languages
have very limited support for lexicons, while natural languages have many synonyms that can
be restricted; programming languages have imperative and conditional sentences, while natural
languages also have declarative sentences; and, programming languages have a rigid syntax, while

5In Kuhn (2014), the author reviews 100 natural controlled English languages from several domains.
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natural languages have an extremely variable and complex syntax that depends on the cognitive
process.

2.4 Phrases

Phrase complexity is another element highlighted, because phrases integrated into a naturalistic
language provide the ability to create more complex instructions with a high level of expressive-
ness from a programmer perspective, unlike formal programming languages where phrases are
decomposed to leave simple nouns and verbs. There are two basic types of phrases: noun phrases
and verb phrases (Bolshakov and Gelbukh 2004).

A Noun phrase is a word set that represents the sentence subject and direct and indirect verb
objects and that enables a property-based description for an abstraction. Thus, instructions can
be defined in terms of properties. Noun phrases can also be used to inquire about hierarchy, so
phrases like a house with a garden can be a House type abstraction with a Garden property—a
HouseWithGarden or even a mixture of both where a house with a garden and pool can be described
as a HouseWithGarden type with a Pool property.

2.5 Anaphoric Relations

In natural languages, abstractions are not only classified according to their type, but these also
using their properties, so phrases like the house and the house with garden not only identify two
different abstractions but also the same abstraction where the second example has a more de-
tailed description. Furthermore, naturalistic languages require explicit typing, because structural
anaphors are type-based for efficient expressiveness, thus indirect references like the house de-
scribed in this paragraph are valid. A higher expressiveness level is achieved using full support for
noun phrases, implying modifiers, determinants, and extensions that enable not only a hierarchy
limited classification but also one based on instance properties (Knöll et al. 2011).

An anaphora allows efficient support for indirect references but only considering the latter ones.
The optimal manner of achieving full support is to consider support for full deixis, where indirect
references are considered irrespective as to whether these are pre- or post-definition references or
whether they are defined in the same or in another text.

Phrases are another element used by natural languages, as they enable an instruction to be
described in more detail. Verbs and nouns are considered by OOP, while simple sentences are
considered by aspect-oriented programming (AOP). The drawback of AOP can be found in the
limited support that a phrase can provide, as a phrase with stronger support could enable more
detailed descriptions in a naturalistic language. For example, the action described in the sentence
“the neighbor’s dog barks when an explosion happens” is based on the capabilities and limitations
of language:

—Functional. A function bark is called from another function, receiving a string with the
owner’s name and the occurrence of an explosion (as a Boolean value). The caller function
invokes bark if both the owner and the occurrence of the explosion are true.

—Objects. A Dog class with a bark method is defined. This method must be validated through
the occurrence of an explosion and whether or not the dog owner is a neighbor, to validate
whether or not a dog barks.

—Aspects. The Dog definition is kept, but the explosion and dog owner are validated in an
aspect with a pointcut that works with explosion, calling bark after the explosion occurs,
so a Dog instance must be kept in the aspect to use it without relating bark with explosion
directly.
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—Naturalistic. Unlike other paradigms, natural language expressiveness is sought, in that the
main description “dog barks” and crosscutting concerns (validate the dog ownership and
the occurrence of the explosion) can be described in the same instruction, which is also
separated from verb definitions.

2.6 Context

Context is a set of proven circumstances that occur around an event. In software development,
there is a close relationship between the problem domain and the problem to be solved. While many
tools are focused on a particular context, leaving others to one side, GPL must cover all contexts so
that they have abstractions and syntax that cover all domains. Because of this, a programmer is able
to increase code when another context is required; however, the previously written code will be af-
fected or modified by the user and this results in a lost context. To deal with this problem, language
designers must provide a clear abstraction definition to avoid loss of context, or use solely the el-
ements required by the context. While a solution consists of making layer definitions that can be
activated at any time for every context (Hirschfeld et al. 2008), this has the disadvantage that these
layers must be explicitly activated, for which an event mechanism is required (Kamina et al. 2010).

On the other hand, DSL cannot respond to changes in the system context, because these rep-
resent complex semantics with simple solutions. Complex semantics result in languages that lack
the flexibility required to respond to the changes made when domain context is changed. In Laird
and Barrett (2009), authors propose an adaptable method to avoid these problems that occur with
DSLs, where an adaptable part is used to decouple implementations from intentions to obtain dy-
namically adaptable systems after these are deployed using a component-based solution involving
a dynamic reconfiguration of interpreter components. This DSL dynamic interpretation model
offers a high level of expressiveness for developing specialized applications.

2.7 Ambiguity

Ambiguity is a natural property of language that describes a word or sentence that has many in-
terpretations, which vary according to a particular context. While we use our reasoning to solve
ambiguity, computers cannot do this. Thus, several mechanisms have been developed that enable a
computer to resolve ambiguity when analyzing sentences from natural language, as an ambiguous
description can result in unexpected behaviors. There are many mechanisms proposed to formal-
ize a natural language description and thus make it understandable by a computer without any
ambiguity.

Anaphora resolution is a technique that has been researched for some years and comprises the
process of how to identify the anaphora referent through a conceptual link (Qiu et al. 2004). In
Arnold and Lieberman (2010a), authors propose the use of dialogs for the treatment of ambiguous
ideas, where, while the user refines an idea, they do not propose a model, instead proposing a
mechanism to generate code in an existing programming language from a natural language de-
scription. Arnold and Lieberman (2010b) describe the Zones tool that uses code documentation to
find reusable code through imprecise sentences. Zones has a back-end named ProcedureSpace that
allows it to find code-sentence pairs associated with context-dependent fragments. Other tools
limit ambiguity, using data dictionaries such as Pegasus and Macho, or establishing keywords to
maintain formal and strict control.

Begel and Graham (2006b) propose an extended generalized left-to-right (XGLR) algorithm to
deal with the ambiguity present in the embedded languages used in voice programming. This
analysis consists in two grammars, one with unique tokens and another with multiple tokens. This
algorithm uses several generalized left-to-right (GLR) instances that analyze several LR instances
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to process the ambiguity of these instances separately. The extended part comes from the ability
to deal with homophone words.

3 NATURALISTIC TECHNOLOGIES

This section presents a discussion about the different technologies focused on the development
of software using a formalized English subset. The term “technologies” is used because it in-
cludes not only languages, but also frameworks and integrated development environments (IDE).
Among these technologies are software-generation tools such as Pegasus, Natural Language Com-
puter, Macho, Metafor, to name but a few, programming languages such as Natural Java, or
documentation-focused languages such as Attempto Controlled English. The focus on solving par-
ticular problems is a feature that, notably, limits implementation to particular situations in a similar
way to a DSL or, to be more precise, fourth-generation languages (4GL), which are enterprise-
oriented and based on an expressive syntax (Heering and Mernik 2002; Mernik and Zŭmer 2001).

3.1 FLOW-MATIC

FLOW-MATIC (also known as B-0) is a programming language developed for the UNIVAC I in
1955, with languages like Common Business Oriented Language (COBOL) inspired by its English-
like syntax (Wexelblat 1981). FLOW-MATIC divides instructions into two sections: English-like
instructions and a particular data definition syntax.

As it was intended to close the gap between programming and natural languages, developers
had, up to that point, used mathematical notation to write code. When designing FLOW-MATIC,
Grace Hopper proposed the use of English for executable instructions and printed forms for the
definition of data to work on them separately.

3.2 COBOL

COBOL is a business-focused structured programming language, the principal features of which
are English-like imperative and procedural language, with an object extension added during the
1990s and standardized in 2002 (Lämmel 1998). In addition to these features, several modifications
are necessary when a company needs to adapt COBOL to particular specifications or when an
English-like expressiveness is required.

Many COBOL-reserved words are synonyms or enable defining expressions with different quan-
tities. Another COBOL feature is that some redundant elements can be omitted, for example, a IS
GREATER THAN b can be simplified to a GREATER THAN b or even as a >b. A DISPLAY word be-
fore a message is used when a value is presented on screen. A previously defined variable can be
assigned using the syntax MOVE ORIGIN-VAR TO DESTINYVAR where the action is indicated by
MOVE and, as is shown, a relation between variables compared to an action is established by the
TO preposition. Whereas variables are described by nouns, actions are described by verbs. COBOL
uses classes to create instances as a mechanism to deal with object-oriented programming that is
tasked with creating interfaces between object-oriented languages using COBOL as a back-end.

Despite its benefits and widespread business use, COBOL syntax is imperative, procedural, and
object-oriented when necessary. While the incorporation of an aspect-oriented paradigm into the
language could have marked the greatest step towards the establishment of a naturalistic language,
it was only reported as a conceptual proposal (Lämmel and De Schutter 2005). Therefore, while
COBOL lacks the required features of naturalistic language, such as indirect references and tem-
porality management, it does have a significant expressiveness level and sufficient formality for
system development regardless of domain.
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3.3 Heidorn’s Dialog Language

In Heidorn (1973), the author studies an experimental natural language system that “converses”
with the user about a problem to solve it. In this system, the user defines problems using natural
language statements; then, if the problem cannot be solved, the system requests more statements
from the user. When it has sufficient statements, the system takes a moment to solve the model to
be executed, after which, the user can either request, by means of text in English, analysis as to
whether the system understood the entry statements and whether they were correctly processed,
or a representation in GPSS.6 This system is based around simulating an English-like dialogue with
the user to produce a DSL implementation.

3.4 Structured Query Language (SQL)

Structured Query Language (SQL) is a DSL whose focus is database creation and handling (Kim
1982). Originally, SQL was intended to be named SEQUEL, but its name was changed due to copy-
right issues (Chamberlin and Boyce 1974). SQL was intended as a declarative language with an
expressiveness level that allows a clear and simple way to define database elements. These el-
ements are: entity, which is reflected as a table; attribute, which is represented as a table field;
relation, which is an association between two or more tables; and registry (or tuple), which is the
data kept in the database. A sentence defines a particular action, which can be the creation of a
table (with keys and relations between tables), an insert, a delete, a modification, or a data query.
As SQL has an expressiveness level that is higher than traditional programming languages, it has
an easy and clearly defined declarative syntax, due to the fact that a pure SQL lacks the control
structures that other GPLs have. While several programmers have developed SQL extensions that
provide supporting procedures, these are generally restricted to a particular environment and are
not interchangeable. A simple SQL example would be

SELECT id, name, age, wage
FROM workers_db
WHERE position = ’manager’

As can be seen, this example is very expressive and easy to understand: we will obtain a query
with the id, name, age, and wage of all managers.

It is noteworthy that in I. Androutsopoulos and Thanisch (1995), authors reviewed how natural
language interfaces could enable the generation of SQL queries from a controlled natural language
input that they named natural language interfaces to database (NLIDB), identifying advantages
such as the use of a natural language instead of an artificial one that uses question-like queries
and supports some level of elliptical sentences. These authors describe such disadvantages as: a
very limited subset of natural language; the fact that the system cannot understand elements such
as conjunctions or false positives and lacks human conceptual and linguistic abilities; and, that the
user could assume that he is dealing with an intelligent system. In Nihalani et al. (2011), authors
also present a historical review of several NLIDBs.

3.5 Natural Language Computer (NLC)

In Biermann and Ballard (1980), authors present Natural Language Computer (NLC), a program-
ming language focused on performing operations over arrays with a limited English subset. While
NLC solves expressiveness problems using natural language to program, there was no technol-
ogy at that time that provided semantic construction capabilities, thus NLC users cannot generate

6Gordon’s Programmable Simulation System (GPSS) is a general purpose programming language used in discrete time
simulations (Schriber 1990).
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system-acceptable expressions, because natural languages have a broad range of rules and word
sets.

The authors propose two rules for the use of natural languages as programming languages:

—Only in-screen data structures are referenced when an instruction is written with simple
sentences.

—Imperative verbs for instructions.

The authors describe English as being as precise as a programmer wants it to be. NLC decom-
poses sentences and compares tokens with either data dictionary or user-defined entities, and
then performs an orthographic correction and checks for abbreviations and ordinals. NLC pro-
cesses nouns, checking phrases and words that alter meaning to create an element set that refers
to screen-displayed structures. NLC analyzes imperative verbs without processing them, updating
them on screen. If a verb cannot be processed, then it is passed to a semantic module where some
predefined verbs are processed with user-defined verbs.

A pair feature set consists in a dictionary that establishes whether a word is a verb, a pronoun,
an adjective, or a noun. NLC also has spellcheck support to suggest alternative options.

The user describes an executed action as an imperative verb, a noun phrase (a noun with its
determinant) and a verbicle (defined by authors as an imperative-verb-associated preposition), for
example: multiply X by Y, where by is the verbicle. A sentence add X to Y is processed by the parser
in the following order:

imperative, noun phrase, verbicle, noun phrase, end (period).

For conjunction, NLC uses a MIX A expression, as shown below:

A, separator (comma), A, separator (comma), (optional) "and", A.

NLC was tested by 23 students after they had received training. From 1,581 instructions, 81%
were processed immediately, while, from the remaining 19%, half were rejected by system limita-
tions and the other half by human error. In conclusion, 300 words were nearly sufficient to solve
problems, with only eight words detected as missing. Incomplete definition words were found,
because implicit elements were involved in more natural forms. Correctly processed instructions
were identified at between 70% and 90%. Error messages were incomplete. Finally, a refinement is
necessary for processor quantification.

3.6 Layered Domain Class (LDC)

In Ballard and Lusth (1983), authors present Layered Domain Class (LDC), which is a medium-
sized language focused on enterprise data queries and learning new English domains. A domain
is divided into layers if it has an NLC matrix comprising a structural relation where entities con-
form a lower level (for example, a calendar has months, days and weeks as low level entities).
LDC has two components: Prep (performed by the knowledge acquisition component) and User-
Phase (performed by the User-Phase processor). Prep establishes domain entities, relations, and
associated nouns that the user must provide, and data structures such as involved entities. It also
establishes whether these are or are not composed, whether or not an entity is plural, or whether
it has ordinals. Later, Prep requests nouns to verify entities and verbs and deal with them. During
User-Phase, LDC receives words and compares them with others stored in the dictionary that was
created during Prep execution, and then creates a syntactic structure called bubble, which is the
formal representation for user queries.

LDC supports several modifiers: ordinals (the second floor); superlatives (the largest office); adjec-
tives (the large room); noun modifiers (conference rooms); subtypes (offices); argument-taking nouns
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(classmates of Jim); prepositional phrases (students in CPS215); comparative phrases (students better
than Jim); trivial verb phrases (instructors who teach AI); implied-parameter verb phrases (students
who failed AI); operational verb phrases (students who outscored Jim); argument-taking adjectives
(offices adjacent to X-238); and negations (the non-graduated students). LDC also has support for
solely anaphorical syntax modifiers, such as: anaphoric comparatives (better students); anaphoric
argument-taking adjectives (adjacent offices); anaphoric implied-parameter verbs (failing students);
and anaphoric argument-taking nouns (the best classmate) (Ballard 1984).

3.7 Transportable English-Language Interface (TELI)

In Ballard and Stumberger (1986), the authors present Transportable English-Language Interface
(TELI), which is a natural language analyzer that enables the modification of known domain-
specific words in a system. TELI first uses normal form database tables to analyze and learn about
problem domain concepts to perform natural language queries. The authors say that implementa-
tions fail either, because the user does not provide clear grammatical rules and reserved words or
does not receive the grammatical constructions required to deal with a domain problem. TELI de-
pends on natural language, because its syntax is based on LISP. It provides several features such as
passive verbs, prepositional and adjective-reduced relatives, quantifiers, and numbers. Also, TELI
provides semantic processing where definitions are provided by the user, meaning that modifiers
are inferred as predicated-managed extensions and that semantic analysis is compositional. Se-
mantics are LISP-like definitions that are stored and associated with an index that is a defined
word. The drawback of TELI is that it has no support for arithmetic operations.

3.8 HyperTalk

HyperTalk is an Apple HyperCards-embedded programming language used for data manipulation
and hypermedia with an English-like grammar (Wheeler 2004) that is based on Macintosh Toolbox
English-like grammar and based on an API. HyperTalk has a Pascal-like logic structure that is
organized through events, and was designed with non-programmer users in mind to close the gap
between them and programming. HyperTalk describes HyperCard element transitions known as
cards, which are containers for objects such as buttons or text fields. HyperTalk allows for indirect
references such as it, the third, last, and before, to name but a few.

In Eisenstadt (1993), the author describes eight problems for HyperTalk, a language that is easy
to learn and use but hard to debug, because HyperCards have a complex structure and lack tools to
analyze and debug code. The user himself must deduct the location of the error to debug code. The
debugging process requires many secondary objectives and the interpreter is inaccessible during
execution, while the user can neither use support tools nor observe a coherent execution view.
The user must have a deep understanding to ensure the correct interpretation of the interrelated
dataflow, and even requires a deeper understanding to ascertain the object’s inner state, which is
not always equal to its apparent state.

3.9 AppleScript

As AppleScript is derived from HyperTalk, it is a scripting language developed by Apple and used
for Inter-Application Communication through AppleEvents (Apple Inc. 2016). It works in a similar
way to a UNIX console. AppleScript is designed to be used with a predefined object library that
is released by Apple. AppleScript follows the HyperTalk idea of creating an easy to understand
natural-language-based programming language. A list from which an element can be selected is
shown in the example below:
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set chosenListItem to choose from list {"A", "B", "3"}
with title "List Title"
with prompt "Prompt Text"
default items "B"
OK button name "Looks Good!"
cancel button name "Nope, try again"
multiple selections allowed false
with empty selection allowed

The if word defines conditionals:

if x is greater than 3 then
-- commands

else
-- other commands

end if

The word repeat is used to define loops and is used in the example below to describe a loop that
repeats itself ten times:

repeat 10 times
-- commands to be repeated

end repeat

3.10 Attempto Controlled English (ACE)

In Fuchs and Schwitter (1996) and Fuchs et al. (1999), the authors present Attempto Controlled
English (ACE), an English formalized version that can be translated into first-order logic and looks
like natural language. ACE lacks ambiguity and is understandable by English speaking humans and
computers alike. ACE consists of various elements. Attempto Parsing English (APE) is a Prolog-
based interpreter that incorporates ACE construction and interpretation rules, with text unam-
biguously translated into Discourse Representation Structures (DSR). DSRs are first-logic variants
easy to translate into any formal language. Attempto Reasoner (RACE) is a Prolog-programmed
tool that enables automatic reasoning to be used to verify the influence of one text over another.
Also, the authors describe Semantic Web ACE extensions, such as the translation between this and
languages including OWL, SWRL, RuleML, Protune and R2ML, while ACE can be used as an MIT
Handbook query language. AceWiki is a merge between ACE and a Semantic Web tool focused on
wikis (Fuchs et al. 2008).

Reserved words (taken from functions and some anaphora-like words) and content words con-
stitute the ACE vocabulary, with grammar definition restricting sentence form and meaning. Text
is an anaphorically-related declarative sentence sequence that can be simple or composed, where
composed sentences use and, or, and if-then expressions to connect simple expressions. Query sen-
tences use a question format with the ? character and words such as what, which, or how, while
those finishing with ! phrases indicate executable commands. To deal with ambiguity, ambiguous
phrases are decomposed into two or more phrases to replace words without losing the meaning.
For anaphoric references, ACE searches for anaphors and replaces them with the last and more
specific noun that is consistent with gender and number. Test results indicate that software ar-
tifacts documented with ACE are clear and defined with a controlled English (Kuhn and Bergel
2014), with ACE performing better than Prolog and SOUL based on a questionnaire applied to 20
software engineering experienced graduates and undergraduates, considering execution time and
user preferences.
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3.11 MOOSE Crossing

In Bruckman (1997) and Bruckman (1998), the authors present MOOSE Crossing, an educational
text-based MUD7 Object-Oriented game that has a DSL named MOOSE, which has an English-like
syntax and is focused on children aged 9 to 19 years old. Children use MOOSE to describe ac-
tions, creatures or places using procedures that are denoted as verbs, strings, numbers or references
received by verbs. MOOSE is an easy-to-learn language where simplicity is preferred over formal-
ity and in which non-alphanumeric characters are avoided as much as possible.

3.12 NaturalJava

In Price et al. (2000), authors present NaturalJava, which is a user interface based on three subsys-
tems: Sundance, a natural language processor; Programming Instruction Synthesis Module (PRISM),
a structure interpreter; and TreeFace, a Java abstract syntax tree manager. While NaturalJava gen-
erates Java code from natural language expressions, it does not support arrays and nested classes.

NaturalJava limits inference to reduce ambiguity, and uses the Sundance natural language partial
parser, which, focusing on information extraction technology, solves fragile expressions. Unlike
full parsers that generate an abstract syntax tree, NaturalJava generates sentence fragments as a
plain syntactic representation using partial parsers.

Information extraction is a natural language processing that extracts predefined types from a
natural language text, focusing on important details and leaving aside irrelevant information. In-
formation extraction systems can include several domains, with, in this case, natural language def-
initions providing Java domain constructions that Sundance processes to generate 27 case frames.
A case frame is a representation of a program construction used to describe concepts.

PRISM provides a user interface for NaturalJava with which sentences can be added, and using
which addition, deletion, modification and AST information queries can be performed via com-
mands. Case frames are divided into two tasks by PRISM: a user determines desired actions; and,
obtains necessary information for test cases to fulfil a petition. TreeFace generates an AST, while
an instance (TreeFace object) maintains the edition context registry with information to be per-
formed and determined using PRISM’s stored concept. Also, TreeFace provides new interfaces,
classes, fields, methods, local variables, loops, conditionals, and assignations as well as enabling
the creation of return values.

3.13 HANDS Tool

Pane et al. (2002) present the Human-centred Advances for the Novice Development of Software
(HANDS), which is a tool focused on GPL and usability for children from fifth grade level or
higher. These authors discard other features such as efficiency, correctness, and similarity with
other languages to improve usability.

The authors conducted a study to analyze how children and adults describe structures before
learning programming (Pane et al. 2001), observing that non-programmers use event-based and
rule-based descriptions where nouns are combined in sets and avoid data structures. Mathematical
concepts are described in natural language terms, while “things” knowing their state implicitly and
solely becoming explicit when this changes.

Usability is described as something to bear in mind when designing new languages, Usability
must be increased or decreased according to the user who will use the language.

HANDS works with its programming environment, consisting in a compiler, a debugger, and
other elements, and also has self-complementary visual and textual languages. As HANDS is

7A Multi-User Dungeon (MUD) is usually a text-based role video game (Bartle 2003).
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user-focused, it avoids mathematical concepts, with the article the able to be used in any part
of the code, and also accepts sentences such as end if. HANDS uses graphical card representations
for memory variables that are managed through an agent called Handy. An example of HANDS is
presented below:

set nectar of flower to 100
set flower’s nectar to flower’s nectar + 25
add 25 to flower’s nectar

Where the nectar is a property of the card flower, with the latter instructions representing the
same event, while the second instruction is more natural from a user perspective.

Also, HANDS uses a query-like mechanism to work with iterators:

all flowers evaluates to orchid, rose, tulip
all bees evaluates to bumble
all snakes evaluates to the empty list
all (flower and (nectar < 100)) evaluates to orchid

Where the word all is used as an indirect reference for all cards associated with flower.

3.14 Action-Based Application to Natural Language Interface

In Chong and Pucella (2004), authors present a framework that enables the creation of interfaces
in natural language for action-based applications. They describe an application interface as a set
of links that facilitates the interaction between the user and the system itself. The user interface
deals with user inputs and presents the system responses to those inputs.

To work properly, a correct separation between interface and the application is required, so
many interface types can be used in a transparent way or, at least, an adapter can be used to
enable the framework to work correctly.

The framework translates natural language into a high-order logic using categorial grammars
that return a semantic representation for the input. As a result, the framework generates a λ-
calculus simple expression that is executed through user-interface procedure calls.

3.15 Metafor

In Liu and Lieberman (2005a), authors present Metafor, a tool that enables the abstraction of the
necessary elements to help new programmers increase their abstraction ability. Experienced pro-
grammers use for brainstorming in the early stages of software development. Text is written by
the user as a story that Metafor analyzes through programming semantics, generating Python
code, which is not directly executed, to help consolidate the user’s ideas through a programmatic
perspective. This technique is presented as an alternative that enables the user to program interac-
tively, instead of using programming books as learning tools. Metafor cannot analyze all English
grammar and allows source code to be written in such a way as to generate an approximate natural
language interpretation.

Metafor can be used to resolve object-oriented programming problems, consisting in the fact
that the objects are inefficient when describing protocols or abstractions involving patterns, which
are then solved using pattern languages. In addition, OOP lacks support for non-functional require-
ments that are solved using AOP. The differences between AOP and pattern languages are that the
latter encapsulate abstractions that cover many objects, while AOP encapsulates abstractions scat-
tered through objects. Although abstraction is the process of taking some elements and ignoring
others, it is undesirable in context-sensible applications (Lieberman 2006).
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Metafor analyzes pronouns like it and he via pre-processing, using ambiguity advantageously
unlike other tools, because, with traditional languages, programmers take essential decisions from
the first steps of development onwards and restructure all code if said decisions are found to be
counterproductive. With figurative representations, which are an efficient mechanism for correc-
tions to be undertaken, object design is simplified. While this task is generally performed using
formal languages, it is a challenge that authors propose to solve with a more neutral object repre-
sentation in a tuple form with format (full name, arguments, body). A type analyzer dynamically
examines body and arguments. Metafor uses normalization to convert an adjective into a noun to
transform expressions like the drink is sweet into the drink has sweetness.

3.16 Spoken Java

In Begel and Graham (2005), authors present Spoken Java, a tool for Java voice programming. Spo-
ken Java enables coding in three ways—by spelling words, using natural language, or paraphrasing
text. Spelling is a slow and tedious task, while paraphrasing text entails abstraction problems that
hinder text comprehension for inexperienced programmers. The authors describe pronunciation as
a drawback, because programming languages use clearly defined writing not focused on spelling,
leading to unpronounceable or hard to pronounce structures. Furthermore, users generally talk
about the code they want to write instead of talking about the code itself. Spoken Java is a Java
superset with extra rules and an increased semantic and syntactic ambiguity.

Ten programmers with the following characteristics recited Java code that was used in Spoken
Java tests (Begel and Graham 2006a): Five knew Java and five did not; five were native English
speakers and five were not; and five were students from the United States and five were not. The
recited code was translated into text. There are elements with a complex translation into code, for
example, array[i] expression was translated as array sub i for some programmers, as array of i by
others, and as i from array for yet others. Homophones were another drawback, because sounds
like for could be understood as a loop, a 4 number or a fore variable. The use of capital letters
is also a problem, because a class definition recited explicitly as that class with capital c by some
authors, requiring the analyzer to deduce whether the word means c or see. Yet another problem
was whitespaces, because the system cannot recognize the difference between the dropStack Pro-
cess and the drop stack process. Authors mention that partial word pronunciation was a problem
for non-native English speakers, because they either enunciated the word or phrase completely or
omitted sections as with printLn. English speakers omitted punctuation when they spoke with au-
thors detecting hindered interpretation in sentences like ex.printStackTrace(), because some users
paraphrased as ex printStackTrace and others ex dot printStackTrace. Users described constructions
in several ways and used expressions like no arguments as a synonym for (). Finally, prosody, a
voice variation used to express ambiguous ideas in their correct form, was employed by users to
recite expressions such as array sub i plus plus interpreted as array[i]++ or array[i++]. The former
example defines an array sub i <pause> plus plus, while the second defines an array sub <pause>
i plus plus. Some non-English speaker users had difficulty with this, because they are not familiar
with English prosody.

3.17 Computer-Processable Language (CPL and CPL-Lite)

In Clark et al. (2005) and Clark et al. (2010), authors describe Computer-Processable Language
(CPL), which is a controlled natural language developed using a naturalistic approach, and which
has a formalistic variant called CPL-Lite.

CPL uses heuristics for making ambiguity decisions to produce human-expected implementa-
tions. CPL accepts three sentence types—facts, questions, and rules. These include auxiliaries and
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grammatical particles8 with a verb, and in which a noun can be modified with other nouns, prepo-
sitions, and adjectives.

Authors also developed CPL-Lite, a mechanism to define queries in a comprehensible and con-
trollable way. Unlike CPL, CPL-Lite does not uses heuristics, compensating by using a more re-
stricted interpreter to avoid ambiguity and thus only using words that can be translated into an
ontology-defined concept.

Both CPL and CPL-Lite have the same expressiveness level, but CPL requires fewer words, be-
cause it has several mechanisms that could give an expression the correct meaning. In the following
example taken from Clark et al. (2010), CPL is used in the AURA tool context, a knowledge-based
system for physics, chemistry and biology:

A man drives a car along a road for 1 hour.
The speed of the car is 30 km/h.

Next, the same example is used with CPL-Lite:

A person drives a vehicle.
The path of the driving is a road.
The duration of the driving is 1 hour.
The speed of the driving is 30 km/h.

CPL infers the concept and necessary elements, whereas, in CPL-Lite, the user describes them
explicitly. Despite this, both approaches have apparent incompatibility, with CPL-Lite embedded
into CPL’s deterministic core, meaning that CPL includes CPL-Lite’s 113 sentence pattern, and
both languages use the same interpreter.

3.18 Natural Language to Python Prototype

In Vadas and Curran (2005), authors present a prototype that receives natural language inputs and
returns Python code. They indicate that that programming tasks and code analysis are generally
complicated if we do not possess a natural language explanation, and that programming languages
possess uncertain details from a natural language perspective. In the following example, they de-
scribe a desirable user input:

read in a number
add 2 to the number
print out the number

which is converted into a Python representation as shown below:

number = int(sys.stdin.readline().strip())
number += 2
print number

As shown, while Python conversion is transparent, ambiguity remains when a number is read,
in this case adding two, because the prototype did not know whether an addition or a string con-
catenation was required. Another variant could be

8According to the Oxford Dictionary, a grammar particle is any one of the class of words, such as in, up, off, over, used with
verbs to make phrasal verbs. A particle is a word without a clear meaning and cannot be inflected.
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read in 2 numbers
add them together
print out the result

whose Python equivalent is

number1 = int(sys.stdin.readline().strip())
number2 = int(sys.stdin.readline().strip())
result = number1 + number2
print result

As shown in the above example, the prototype could generate two variables, because the expres-
sion read in 2 numbers and add them together implies an indirect reference variable creation and
invocation, unlike the first example where number is described explicitly in the three instructions.

In the first example, ambiguity is solved through assumptions: if a variable is called number,
it is more likely to be used as a numeric value than as a string. On the other hand, the second
example is resolved when the prototype analyzes the expression 2 numbers, the scope of them and
the correct association with result. The latter example is still without a proper solution.

The authors performed a study of how tasks are described by programmers, with the corpus
used consisting in 370 sentences from 12 programmers. From this corpus, the authors found that
programmers generally described tasks in programming terms instead of using a simpler natural
language solution. From the examples, they found that some programmers described procedural
constructions, even adding an end loop sentence that was partially corrected with Combinatory
Categorial Grammar, with the corpus then analyzed by a parser and the errors corrected manually.
The authors also describe how corrections were required for nearly all sentences.

For future research, they describe how they would use a better prototype capable of correct
recognition for a greater corpus range, and that they would refine the parser and the semantic
engine and use a quiz system to obtain additional information.

3.19 Pegasus

In Knöll and Mezini (2006), authors present a tool that not only eases software development
through natural language sentences, but also provides multi-language support to facilitate team-
work among people from different countries who speak a variety native languages without af-
fecting the overall system. In its actual stage, Pegasus generates simple programs in English and
German languages, while Mefteh et al. (2012) describe an Arabian language extension named
Ara_Pegasus.

Authors describe four problems relating to how the gap between the developer’s expectations
and programming techniques cannot be closed:

—Mental problem. An idea must be adapted to a programming language, decomposing or
grouping its elements.

—Programming language problem. An algorithm must be translated into several languages
that use new technologies and concepts, meaning that old languages still have a strong
presence.

—Natural language problem. In the modern era, while people from all around the world
work in teams, they generally have a different native language and their own particular
regionalisms.

—Technical problem. In system design, the developer’s contribution and time is in-
vested by programmers thinking about how to best adapt ideas to produce an efficient
implementation.
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Pegasus has a limited human thought model where the concept of the idea is described as a
human perception of the external world. As an idea is a personal perception that varies between
two humans, a perception is an ideas set. Atomic ideas are those that cannot be decomposed into
simpler ideas; therefore, a table idea is an idea set that could be atomics, such as color or a hori-
zontal panel, or composed ideas, such as texture, as defined by the element from which the table
is made (wood, for example), or a particular smell. The authors propose notation idea to formalize
ideas. An example of this concept, taken from Knöll and Mezini (2006), is presented below:

wood: [smell of wood, warmth, solidness, brown color]
table: [horizontal panel, vertical bars, wood, solidness]

This example defines two complex ideas, with simpler ideas specified between square brackets.
Furthermore, the wood idea can be integrated into the table example, thus:

table: [horizontal panel, vertical bars, [smell of wood, warmth, solidness,
brown color], solidness]

A composed idea is defined as the composition of representations. In this case, for example, the
ideas table and brown can become a composed idea summarized as follows:

(table, brown)

or extended as

([horizontal panel, vertical bars, [smell of wood, warmth, solidness,
brown color], solidness], brown)

As long as a complex idea is the association of atomic or complex ideas, composed ideas associate
several complex ideas through a particular moment.

Pegasus is a tool that enables natural language text, conducting analysis to return executable
code as a result. Pegasus uses three basic features to function: it reads natural language; it generates
source code; and, it expresses natural language. The authors describe such features as comprising
a brain that presents concepts as the notation of ideas.

The Pegasus brain has three parts:

—Mind: Focused on understanding the meaning of a sentence.
—Short-term memory: A queue comprising eight cells of the most recently used elements,

with the first element deleted when the stack is full and a new element is placed in the
queue.

—Long-term memory: A data dictionary where ideas, their grammatical variations and se-
mantic knowledge are defined.

Pegasus analyzes the grammatical structure of a sentence to obtain its ideas and relationships,
and then identifies the context of the sentence. An idea appears as an entity, action or property.
Pegasus analyses an idea by comparing the meaning of the abstracted sentence idea with ideas
stored in an entity dictionary. Then, Pegasus decomposes the idea into sub-ideas to resolve its
meaning. Once an idea is solved, Pegasus generates Java code, although it is not limited to this
language. To generate text in another natural language, Pegasus compares the input with the ideas
dictionary and generates an output.

3.20 Little and Miller’s Prototypes

In Little and Miller (2006), the authors describe a mechanism for the translation of simple instruc-
tions into executable code related to a particular domain. The authors present two prototypes—a
Web-based browser and another based in Microsoft Word.
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Similar to programming-by-demonstration (PbD), the translation is performed without the user
knowing how the script functions. This approach enables the implementation of description and
filling mechanisms applied to forms for practically any website. The user is also able to record his
actions in a command set that works on the website, even for form filling tasks that can be shared
to other people.

Expressive functions such as left margin two inches are described, where the system translates
it into Visual Basic code InchesToPoints due the word “inches” being shared in both descriptions.
As the system infers that this is the most appropriate function in the sentence context, the result
ActiveDocument.PageSetup.LeftMargin = InchesToPoints(2) is returned.

The system can infer string sequences such as UIST 2006 into search textbox, translated into a
search for UIST 2006 that is executed with an implicit “enter” in the textbox with name search.

With the system tolerating nested functions, expressions like pick the 4GB RAM option is success-
fully translated into pick(findOption(“4GB RAM”)). This nesting is limited to continuous strings, so
expressions such as pick option 4GB RAM can be correctly inferred, but not expressions such as
option pick 4GB RAM. This is because findOption receives a string, while pick does not, thus gen-
erating findOption() in the latter example.

The prototype uses various formats for values such as 2, which can be replaced by 2nd, two
or second, among others. While quotes are optional for strings, their use reduces ambiguity. The
system deals with arguments using several approaches, one of which being explicit naming. For
example, while, for the function definition click(integer x, integer y), the sentence click 300 y 200 x
is valid and the arguments are ordered, 200 300 click is also valid.

3.21 MOOIDE

In Lieberman and Ahmad (2010), authors present MOOIDE, which is a tool for creating MOOs
using natural language. MOOIDE is formed by a parser that analyzes English text and provides
information from a knowledge base. With MOOIDE, users add new elements in order that other
users can interact with them. MOOIDE uses anaphora resolution and Commonsense knowledge
through Open Mind Common Sense to guarantee that objects and characters are text coherent. An
example is presented below:

There is a chicken in the kitchen.
There is a microwave oven.
You can only cook food in an oven.
When you cook food in the oven, if the food
is hot, say "The food is already hot."
Otherwise make it hot.

MOOIDE learns about situations, so, if we write this:

Cook chicken in microwave oven

the system associates the sentence with the previously defined rules. In this case, an error will
be returned due to the fact that there is no relation defined between microwave oven and chicken.
To resolve this, we can write:

People eat chicken

Then, the system can associate this with the previous sentence and then print the chicken is now
hot.

As MOOIDE is restricted to real world properties, something cannot be defined based on magic,
and Python code is returned as executable code.
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3.22 Macho

In Cozzie et al. (2011), authors present Macho, which is a tool that facilitates the generation of
source code from simple natural language instructions. Macho works by analyzing text and trans-
forming it into executable queries to obtain code fragments from a database filled with source code
examples that are integrated to return a functional program.

Due to its features, Macho only allows very simple UNIX comand-line utilities without op-
tions, and one or two arguments. Based on the generation of automatic code from user-defined
requirements, Macho focuses on requirement analysis and Java code generation. To reduce ambi-
guity, Macho uses combined code fragments.

Macho analyzes, processes and transforms simple natural language instructions into queries to
select source code fragments to construct a program. To do this, it has four subsystems:

—Natural language parser. Analyzes verbs, nouns, prepositions, abbreviations and conjuga-
tions that can contain relevant information for code implementation.

—Database. A library storing more than 1,200 code fragments, from which fragment candi-
dates are selected.

—Stitcher. Fragment codes are combined, from which candidate programs are returned.
—Automatic debugger.

Macho combines code fragments by analyzing two expressions via a variable if the output type
matches the other input type, or by using the Stitcher subsystem to search for code to find a
fragment for a type conversion. Macho provides limited control flow, where a natural language
parser generates if sentences and synthesizer infers, generating loops if suggested by the system.
The debugger analyzes and classifies code in five cases:

—Exception (code is inserted into an “if”).
—A correct output superset (print is inserted into an “if”).
—Garbage (subsequent program is tested).
—Correct output subset (some further prints are tested).
—Correct output (process end).

Macho generates source code from expressive natural language sentences. Due to sentence am-
biguity, the programmer must provide Macho with code fragments. Macho assists programmers
without replacing them, because it does not resolve ambiguity. As reported in Cozzie and King
(2012), the authors performed a study on Macho, in which they found that, from 69 tests, Macho
generates 55 correctly in a time that varies from 2 to 20min.

In Cozzie and King (2011), the authors also describe early work on an update named Macho II,
where the computer “learns” to generate compositions from these patterns to generate Java code.
Macho II will work using natural language processing techniques and a probabilistic model for
Java code. With this in mind, the authors say that it is possible for a model to learn to predict
based on operations to generate code in almost any programming language.

3.23 Aiaioo NLC

In Carlos (2011), the author presents Aiaioo NLC, a natural language programming system that
uses class sequential rules. This system is limited to dealing with real numbers operations, in
a process consisting in the decomposition of instructions into sentences and their classification
into predefined categories. Based on this classification, the system extracts entities for use in code
generation, while for natural language code recognition, it facilitates the creation of new rules
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and the recognition of new instructions that the system classifies into the existing categories and
which can even be translated into another language to be used via the system’s learning ability.

The author describes “proceduralization” as a construction process guided by steps, blocks, con-
ditionals and loops. Imperative words are verbs that indicate function calls or change commands.
The system uses questions to evaluate a variable or expression. The author requests entry tests
via the internet, to express natural language instructions, and then classifies the responses accord-
ing to notation rules described as follows: conditional primitives express conditions or actions;
loop primitives evaluate primitives repeatedly; operations with side effects change the state of the
variable; operations without side effects do not change the state of the variable; and relational
operations compare values. The author defines class sequential rules as a token-ordered sequence
where a sentence is correct only if its evaluated rule is correct.

3.24 Similar to C Spoken Language

In Gordon and Luger (2012), the authors present an imperative and C-like programming language
that is easy to recite through simple English voice processors. This language has a typical grammar
but omits punctuation and unpronounceable symbols, with the interface freeing the user from the
typing task and carrying out compiling traditionally. The language was tested as an Eclipse plug-in
using CMU Sphinx as a voice recognition engine and ANTLR for grammar definition. The authors
describe how most voice recognition engines lack traditional programming language support and
present two approaches to solve this problem. The first features programming models with built-in
voice processing engines while, in the second, the tool generates code from English constructs.

3.25 Automated Test Automation

In Thummalapenta et al. (2012), authors present a technique to automatize automatic tests in soft-
ware systems performed by testers who are, generally, not programmers. They perform the tests
based on test cases without losing the informality, flexibility and ambiguity related to natural
languages, while, at the same time, maintaining the accuracy of the scripting languages. Testers
generally describe test cases in natural language that are captured in requirements and use cases to
be translated into scripts, which then validate system quality. Testers perform this task manually.

The authors propose a mechanism to extract relations between actions and user interface el-
ements without using an advanced natural language. Instead, the authors propose employing a
step-by-step description where the tester describes his interaction with the user interface. The
main problem is that, as a stylized description could contain ambiguity, heuristics and application-
specific rules are required.

This approach deals with ambiguity by exploring alternatives to obtain a result or, when the
system reaches an unresolvable point, performing a rollback to the last decision, after which the
system continues with another alternative. Thus, the system analyzes a step-divided test that is
ordered has identified objectives, and which, if an ambiguity is found, then generates a bifurcation.
The last two steps are the identification of the segments that refer to interface elements, and their
execution in the browser with consequent decisions to explore different flows.

3.26 Programming by Example-based and Natural Language Hybrid

In Manshadi et al. (2013), authors present a framework that uses natural language descriptions
over the course of one or more examples. With this in mind, authors propose that Programming by
Example (PbE) is reinforced by using natural language descriptions to obtain an expected output.

To achieve this goal, this framework uses ambiguous natural language descriptions that are
complemented with examples that resolve the ambiguity, generating input-output pairs for every
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possible solution, and then selecting the best option based on how well-adapted it is to the natural
language description.

To resolve a problem from PbE, the framework decomposes a problem into simpler problems that
are individually solved with defined restrictions for each. While the system uses Space algebra to
deal with this decomposition, this returns near-infinite regular expression compositions; therefore,
these expressions are intersected for all pairs. It also uses a probabilistic PbE (PPbE) method to
reduce the number of possible solutions.

For the natural language component, the authors used a dependency parser for each description
to code not only the syntactic but also the semantic structure.

3.27 SmartSynth

In Le et al. (2013), authors describe SmartSynth, a smartphone script-generation tool. SmartSynth
produces scripts in SmartScript, a DSL created for this purpose. As SmartSynth processes natural
language descriptions, it functions as a program synthesizer that serves as a translator between
the user and the smartphone.

In SmartSynth, the user enters a natural language description that translates with an algorithm
and obtains the API-related elements from the input. Thereafter, the system interacts with the user
to resolve ambiguous or unknown elements. Then, SmartSynth relates descriptions and returns an
executable script.

Eleven students tested SmartSynth, produced 750 different descriptions for 50 tasks, of which
640 met with the specifications and were used to validate SmartSynth. Based on this corpus, Smart-
Synth identified 64.3% of components using the base algorithm only, to a precision level of 77.1%
combining all features, and 90.3% with user interaction. The drawback was that a rule-based res-
olution provided an 86% precision level. Taking this into account, an overall level of 58.7% was
achieved using NLP-related techniques only, while, using program synthesis, this improved to 90%.

3.28 Natural Language Command Interpreter (NLCI)

In Landhäußer et al. (2016), the authors present Natural Language Command Interpreter (NLCI),
which, based on an ontology that models an API that translates natural language inputs into API
intentions, is a tool focused on generating executable code from English descriptions. The authors
used two APIs to test NLCI, openHAB and Alice, with NLCI constructing API calls with an accuracy
of between 67% and 78% for 50 written scripts. The ontology serves as a bridge between natural
language and the code that implements its meaning.

The NLCI’s focus is to resolve non-sequential problems occurring when humans express ideas
non-sequentially, meaning that it is not necessary to express a program description in execution
order. This problem was observed when children were instructed to use Alice; Alice is a 3D tool
designed to teach children to program to create animations.9 A limitation of NLCI is that it is
unable to handle temporal elements, of which authors describe three English expression types:
tense, temporal prepositions, and temporal adverbs (Landhäußer et al. 2014).

In a first NLCI test described as “AliceNLP,” the tool divides text into ordered steps, and analyses
and organizes it according to found temporal expressions. NLCI has an 86% success rate from 24
tests with the Alice implementation, with the time line correctly established in 17 tests. Also, NLCI
is not limited to working with Alice, because its approach is based on an ontology for a library
description, thus, when the ontology is changed, another library can be used (Landhäußer and
Hug 2015).

9While an Alice ML language was developed as a Standard ML dialect by Saarland University (University 2014), in this
article, the term “Alice language” is used only for the tool developed by Carnegie Mellon University.
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Later, the authors performed a test for both openHAB-based and Alice-based software. In open-
HAB, they wrote 5 scripts with 15 commands based on the ontology generated from the website
demonstration configuration. To feed the Alice-based ontology, they programmed ten animations
and two static scenarios that were described by both programmers and non-programmers using
natural language, after which this information was fed into NLCI, thus returning a sequence of
API calls. The authors created a corpus of 86 scripts, with only 50 usable for animations, whereas
30 were executed for static scenarios and six were discarded. The overall level of precision was
78%, with 67% recorded for correct API calls. Because openHAB and Alice cannot provide support
to deal with pre-conditions and post-conditions, NLCI could not resolve them, while the authors
also expressed their interest in improving a voice translation system.

3.29 NLyze

In Gulwani and Marron (2014), authors present NLyze, a natural language-based interface for
spreadsheets. This interface is based on a DSL that uses algebraic calculations and several mech-
anisms for table management focused on inexpert users. It was implemented as a plug-in for Mi-
crosoft Excel.

The authors designed a DSL that was sufficiently expressive to solving tasks while being suf-
ficiently restricted to maintain efficient translation. With this in mind, the DSL enables mapping,
filtering, and reducing operations. An algorithm called Translate receives a natural language in-
struction and a spreadsheet, then returning a ranked set of program candidates generated in the
DSL that are possible interpretations of the instruction over the spreadsheet. This algorithm con-
tains two other algorithms, Synth and Rule.

Synth focuses on type-based compositions, generating them by applying a recursive decomposi-
tion to obtain smaller fragments. Rule focuses on a common pattern rule set to return word-based
instructions from the sentence. Rule is limited to syntax and fails when it receives sentences with
words outside the expected pattern, which Synth then complements to increase the algorithm ef-
fectiveness of the translation.

While SmartSynth does not solve ambiguity, it returns both candidate programs based on user
input and a natural language description for all candidate programs in order that they are easily
understood by the user.

3.30 NL to DSL Framework

In Desai et al. (2016), authors present a framework that takes natural language as an input and
returns several DSL code blocks that the tool ranks according to how near they are to the expected
result, based on user input. The authors indicate that in 80% of the tests, the correct code was
shown at the first attempt, while correct code was shown in the first three attempts in 90% of the
tests, which were undertaken on a corpus of 1272 natural language inputs.

This Framework is DSL-independent and its specification and text-code pairs are required to
train the tool. This framework uses a synthesis algorithm that generates candidate programs from
text, based on the relation between terminals and text words. A data dictionary establishes this
relation during the training phase, and also filters typos, solves homonyms and, finally, assigns a
score for every program according to how near it is to the user-expected input. Also, its noteworthy
that this framework uses techniques presented in SmartSynth and NLyze, so it can be seen as an
refinement or extension of both tools, because it is not limited to a single DSL.

The authors implemented it with three domains: text editors with Microsoft Excel with a DSL
to manipulate spreadsheet; automata for intelligent tutoring problems in which a DSL was also
designed; and, an ATIS system for air traffic, in which a SQL-like DSL was designed.
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3.31 Fourth-Generation Languages

The term fourth-generation languages is generally associated with enterprise data-managing lan-
guages optimized for database access, report generation and graphical interfaces (van Deursen
et al. 2000). Due to their enterprise focus, language developers create 4GLs with a higher expres-
siveness level and more restricted abstractions; however, these langauge do not have a “4GL stan-
dard design,” so every 4GL has its own grammar and properties. This section reviews several 4GLs
that have natural language features.

3.31.1 Advanced Business Application Programming Language. Advanced Business Application
Programming Language (ABAP/4) is a report-focused language that uses procedures to develop
complex enterprise applications. ABAP derives from SAP R/2 and is embedded into SAP R/3
(Kemper et al. 1999). ABAP/4 enables database access through Native SQL and OpenSQL, and can
manage events. It has support for object-oriented programming through the use of ABAP objects,
features intern tables similar to C “structs”, and enables the definition of COBOL-like instructions
(SAP-AG 2014). ABAP provide mechanism to describe verbose instructions like ADD 2 TO result,
which is the naturalistic equivalent for result += 2; it is noteworthy that the ABAP instruction is
equivalent to an English sentence with an elliptic subject.

3.31.2 Informix-4GL. Informix-4GL is a report-focused language with a limited imperative op-
erations capability, designed to resemble natural language. Producing bytecode as well as C code as
output, Informix-4GL is a very popular language due its clones, which have extended functional-
ity, such as Graphical Interfaces or Java code translators, one of which being Aubit-4GL (Aubit-4gl
team 2001). Users generate reports and connect them to many database managers. Informix-4GL
also has an embedded SQL query language support (IBM-Corp 2015). Informix-4GL has a powerful
support for graphical interfaces and the programmer can describe tasks with a English-like syntax
like MOVE WINDOW, NEXT FIELD “fieldname,” or NEXT FORM NEXT OPTION “optname,” to name
a few (O’Gorman 2010).

3.31.3 Visual FoxPro. Visual FoxPro (VFP) is a data-oriented programming language that was
developed by Microsoft with FoxPro capabilities but that can also be used to develop user inter-
faces simply. As Microsoft designed VFP with data-dependent Windows application development
in mind, VFP has database support integrated into its grammar, and displays information eas-
ily due its simple syntax (Hennig et al. 2005). Due to VFP is focused to build user interfaces, it
is has an imperative grammar that allows working with graphical environments and databases
with a formal, but expressive grammar where a sentence DEFINE POPUP table MARGIN RELATIVE
SHADOW COLOR SCHEME 4, describes a popup table named “tables,” which is “margin relative”
with a “shadow color scheme” assigned to 4 (Pinter 2004).

3.31.4 Nomad Software. Nomad Software is a relational database-oriented language that com-
bines both interactive and batch processing. It enables database definition, information handling
and report generation and also has a database-oriented language for manipulating reports. Unlike
other languages, Nomad is end-user focused, because the users are generally big corporations us-
ing languages in batch production loops, Web applications, and Web or desktop applications for
report generation. It is an intuitive database-focused language with an interactive development
environment in which an instruction can be immediately written and executed. Also, Nomad gen-
erates relational and normalized databases that are compatible between several database systems,
such as VASM, IMS, IDMS, DB2, Oracle, and SQL Server (McCraken 1980).

3.31.5 SAS. SAS is a PL/I syntax-based language developed by the SAS Institute, whose focus is
the statistical data analysis of databases or tables. SAS displays these data in graphic or document
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form, analyzing and then modifying tables in several ways to present results as a reports, and also
analyzes SQL code. A remarkable detail is that SAS has no restriction in terms of reserved words,
which can be used as identifiers. The unrestricted use of reserved words results in an ambiguous
language that requires previously defined instructions that depend on context. SAS has had a built-
in R10 language since its 9.2 version, which enables the use of its features (Li 2013).

3.31.6 OpenEdge ABL. As OpenEdge ABL is a language that depends on data and has an
English-like syntax, end-users can develop applications without knowing a programming lan-
guage. Based on graphical interfaces and data queries, it has an expressiveness syntax that enables
the construction of data queries, inserts, modifications, and the deployment of simple tasks (Sadd
2006).

3.31.7 LiveCode. LiveCode is a HyperTalk-based language that was originally named Revolu-
tion, which, in 2010, its authors changed to LiveCode. LiveCode is an easy-to-learn language that
runs on/above various platforms, such as Android, Apple, or Windows. LiveCode has an English-
like syntax with dynamic typing and has code expressive enough for it to be considered self-
documented and suitable to be learnt from the age of 14 and above (LiveCode Ltd 2016).

4 DISCUSSION

This section presents two tables with very similar features but focused on different concepts. While
Table 1 describes technologies that may also contain grammars, Table 2 describes only those that
are languages and that may also form part of a tool.

4.1 Tools

As can be seen in Table 1, the main focus of these technologies is automatic source code generation
or the resolution of particular domain activities. Others have a general purpose approach but inte-
grate naturalistic elements to ease reading for programmers. It is noteworthy that many of these
technologies rely on the use of predefined grammars to avoid ambiguity, using reserved words
with or without data dictionaries. Some of these tools generate GPL code through code fragments
in one or more programming languages. Another common feature is the use of indirect references
in a very limited way, using pronouns such as it. As only two technologies have addressed the
problem that appears when a programmer is not a native English speaker, authors promote the
development of software in languages other than English. Another thing to be noted is that as
many technologies are industry-focused, their features are focused on improving productivity. On
the other hand, there are few tools focused on learning using natural language features, with those
that do integrate them limiting their use as an efficient software development tool. For example,
having no interest in efficiency, HANDS’ execution can be very slow compared to other tools. Last,
some tools are focused on the creation of code that is self-documented or can be translated into
high-order logic.

From all the technologies reviewed in this study, automatic code generation is observed to be
the main problem that authors want to solve. Pegasus is the only tool which authors define as
generating automatic source code from a controlled natural language tool restricted to defining
concepts in English and German through an entity dictionary. Furthermore, a future research line
could look into Pegasus being supported by many other languages, such as Spanish, French or
Arabic. The main focus in Knöll and Mezini (2006) was to solve development problems observed

10R is a statistics-focused object-oriented language influenced by both S and Scheme. It is focused on conducting statistical
tests, time series analysis, classification and grouping algorithms, and linear and non-linear models (The R Foundation
2016).
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Table 1. Properties of Revised Tools

by authors when there are teams whose members come from different parts of the world and who
need to work together even when they have different native languages.

Macho is a Java generating tool that takes natural language text in query form for very short
and specific programs, using an iterative process that can take several minutes to perform and to
return source code from database-stored blocks. While Macho does generate code, it does not allow
direct programming through a naturalistic language due its focus on automatic code generation
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and also lacks an efficient way to treat ambiguity. Authors indicate that they are working on a
major restructuring of Macho that uses machine-learning and a graphic dataflow language.

Metafor is another technology whose main focus is to help programmers describe problems
through brainstorming, in which a programmer reflects a problem in Python scaffold form. Metafor
requests feedback through user dialogue to strengthen the code. Similar to Pegasus, Metafor is
focused on helping programmers as opposed to being a language or paradigm alternative.

As a tool whose implementation was reported several decades ago, the context in which NLC
operates is different to more recent tools. Its main focus is to work solely with arrays that are
shown on the display, restricting its use to a very narrow domain and, thus, controlling ambiguity
when many elements are referred.

NLCI is a tool focused on translating natural language commands into executable code. As
shown in previous examples, this is a domain-specific tool in which temporality is reported as
a problem to be solved in future implementations. NLCI can also be implemented with several
languages simply by changing the ontology.

As LDC and TELI are database management tools that learn from English instead of being a
programming tool themselves, they lack several software development features. This is relevant,
because natural language is used in adjective based queries, enabling complex code sentences based
on phrases if used from a programming language approach.

Aiaioo NLC is a tool limited to work with operations over real numbers, where command recog-
nition and language translation (natural languages) rules can be created, allowing imperative verbs
as procedures and questions as conditionals. This tool domain is restricted to a specific domain and
its domain-restricted treatment of ambiguity treatment is not mentioned.

Attempto Controlled English is a formalized subset of English and is used to document soft-
ware artefacts. It was developed due to the need for an ambiguity-free English version that can be
translated into a formal specification. While the main disadvantage is that it is a documentation-
focused tool and there are no reports of software-generation systems, it is a good example of the
importance of correct software development documentation.

4.2 Languages

Table 2 presents the natural language features of the languages reviewed here. As expected, many
of these are industry-focused and have report-generation features. Due to their focus, these lan-
guages have an English-like expressiveness with some level of natural language elements. Very
few are learning-focused and only one was designed explicitly for this purpose. As some lan-
guages have the ability to generate code in one or more GPL, they require data dictionaries, with
the exception of the SAS language.

COBOL is a GPL that was designed by military and business companies for non-academic use,
although it does have an expressive syntax. An imperative language without indirect reference
support, COBOL derives from FLOW-MATIC language, meaning that both languages share many
features.

CPL is a naturalistic language that resolves ambiguity using heuristics and artificial intelligence
techniques. As a limitation, CPL depends on CPL-Lite, which is a formalistic language. The prin-
cipal version of CPL resolves ambiguity problems with CPL-Lite, because the latter is integrated
into the former. Another point is that both languages have a high expressiveness level.

The Spoken C language that is presented in Gordon and Luger (2012) is designed to be recited
by programmers, making this the only natural language feature for this language due to it being
imperative, like C. Another example is Spoken Java, which is a type of voice programming Java
superset. Both languages are too complex to be formalized, because both prosody and the issue of

ACM Computing Surveys, Vol. 50, No. 5, Article 70. Publication date: September 2017.



70:28 O. Pulido-Prieto and U. Juárez-Martínez

Table 2. Properties of Revised Languages

whether or not a user speaks English as a native language are factors that have a strong influence
on how the code is pronounced; therefore, parsers conduct its interpretation.

HyperTalk and AppleScript are two English-based programming languages that are focused on
graphic interface design, using which, inexperienced programmers are able to develop applica-
tions. While both languages provide basic indirect reference management, the main disadvantage
is that they are domain-specific languages. As HyperTalk is embedded into the HyperCards tool,
it does not have debugging support from its compiler.

In the case of fourth-generation languages, this study found a tendency for solving particular
problems, meaning that 4GL languages lack standardization, and, moreover, are generally propri-
etary languages, meaning that it is hard to obtain and modify source code for a particular prob-
lem. 4GLs are an inflexible way to develop applications that are not only data-dependent, but
also require several processes that language developers do not consider in language design. While
many 4GLs solve this by offering or accepting libraries that users create in other languages, this
means that 4GLs require other less expressive languages, a need that 4GLs were supposed to
solve.

5 OPEN ISSUES

This study reviewed the state of the art of naturalistic technologies, concluding that there are
several issues to be resolved to efficiently close the gap between the programmer and the computer.
This section describes those issues:
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(1) Ambiguous indirect references. The main limitation in natural languages in programming
is the ambiguity that comes from using indirect references. While several tools use arti-
ficial intelligence techniques such as ontologies or anaphora resolution to find a relation
between an anaphor and its referent, these techniques seek to deal with natural language
processing rather than formal languages. Other tools avoid ambiguity by using predefined
grammars and reserved words that allow them to generate indirect expressions in a very
limited and controlled way. The main problem with these tools is that they limit indi-
rect references to words such as it, thus ignoring concepts such as type and classification.
Thus, it is necessary to strengthen the way in which indirect references are implemented
in formal grammars to increase expressiveness from a human perspective.

(2) Lack of naturalistic iterators. As natural languages are expressive enough to describe things
both sequentially iteratively, a set of steps can be described, followed by the instruction
to “repeat until the task is complete,” where “the task” can be implicitly described in pre-
vious (or the latter) text, requiring to use cognitive process to understand it. On the other
hand, programming languages need to describe explicitly when an iteration block will be
complete, while, as iterator blocks do not know about their contained instructions, cod-
ing a cycle requires a symbol to describe when the block ends (traditionally, enclosing
the block into braces or tabs for the block instructions). Even though iterator blocks are
an expressive and powerful means to describe repetitive tasks, they are not naturalistic
enough to describe things in natural language terms. As a naturalistic iterator could pro-
vide an expressive way of describing cycles using structural anaphors and cataphors in a
reflexive way, these cycles are defined in terms of “the next instruction” or “the previous
ten instructions.”

(3) Lack of naturalistic bifurcations. Natural languages describe selective actions using only
the “then” course of action, thus avoiding the “else” unless it is necessary. Moreover, these
structures are described in terms of “if we have permission, perform the next tasks,” where
“permission” is a previously defined action and “the next tasks” are the actions to be per-
formed. Formal languages describe the if-then-else blocks that break down the main course
of action in a similar way to exceptions in Java. A naturalistic bifurcation that works in
a similar way to the naturalistic iterator described above could enable the description of
instructions in terms of “the next ten elements” without using unnatural structures.

(4) Lack of abstractions with naturalistic features. Unlike formal languages, virtually any-
thing can be used as descriptors in natural languages, enabling us to describe abstract
concepts such as “emptiness,” physical elements such as “a chair,” or even grammatical
elements such as “this paragraph.” Furthermore, natural language elements have several
features that alter state, such as quantity or gender, and which can be affected by other
elements defined as adjectives. An abstraction that supports a quantity and dynamic
adjective-like combination could simplify the use of lists in programming languages.

5.1 Model

This study, thus, proposes that a textual-based naturalistic language has the following features:

(1) It can enable the definition of abstractions in terms of nouns, adjectives and verbs.
(2) It can enable the definition of instructions in terms of previously defined elements.
(3) It can enable the definition of a subject and a predicate with a complexity greater than

just a noun and a verb through the use of phrases.
(4) Languages must define types explicitly to use them in sentences.
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Furthermore, the following elements are considered as desirable:

(1) Full support for deixis.
(a) Endophoric reference support.

i. Anaphors.
ii. Cataphors.

(b) Exophors.
i Homphors.

(2) Property-based typing that enables the composition and generation of new abstractions.

The model described in this section allows defining naturalistic languages with formal restric-
tions, where ambiguity is not only solved with the grammar but also with abstractions. Therefore,
a naturalistic language based on this model has both naturalistic and formalistic properties. For
example, the sentence “time flies like an arrow; fruit flies like a banana” is a naturalistic descrip-
tion that must be resolved using clearly defined mechanisms. Its ambiguity can be resolved in a
formalistic expression such as “time flies like an arrow; fruit flies enjoy a banana.” In this example,
the word “like” was replaced by “enjoy” to resolve ambiguity without changing semantic mean-
ing. On the other hand, the model described in this section allows describing abstractions to solve
ambiguity, where time is defined as a noun with a flies like verb with a direct object named arrow
and defined as a noun. For the second part, and according to the context, a noun fly with a plural
alternative flies and a verb like can be described to be used with an adjective fruit, or a noun fruit
with a verb flies like can be described, where both verb definitions have a banana direct object
defined as a noun.

6 CONCLUSIONS

This study analyzed various tools that use a controlled English grammar, with this controlled ver-
sion then integrated with either a means of translating into a programming language or ambiguity-
free documentation-generators or as an imperative language grammar component. Naturalistic
programming-related concepts both from a programming and linguistic perspective have been
described in this article, which proposes linguistic elements that can be considered for use in a
naturalistic language, such as anaphors, temporality, and English-like formalized grammar. Fur-
thermore, proposed abstractions have been described as a means to define and implement a general
purpose naturalistic model.

According to the technologies reviewed, this study concludes that authors use natural language
elements on a different scale to increase expressiveness. A drawback of this is that these elements
were used as a support for the proposed solution of the problem rather than as a crucial part of
the solution for the project. Disperse naturalistic features were, therefore, found in these imple-
mentations, features such as an imperative-adapted naturalistic syntax, as in COBOL, or a natural
language parser implementation that automates software generation, as in Pegasus, which, in this
case, is limited by its entity dictionary.

A challenge observed in most technologies is that they are focused on their own internal prob-
lems, meaning that there are several code variations resulting from said tools, which could be
closed and proprietary where maintenance is performed by developers who have not used a model
to support the defined language. Moreover, many of the technologies reported here are data dictio-
nary or precompiled library-dependent, thus even further reducing their use to particular domains.

There are languages that have a high expressiveness level, which provides them with a human-
like cognitive process to deal with ambiguity; however, these languages are limited by particular
domains and use controlled natural language. The goal of the naturalistic paradigm is not natural
language programming, nor is it to deal with a cognitive process beyond that which we use to
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name identifiers, because this task is intended to be performed by a programmer in a similar way to
other paradigms. Nevertheless, a naturalistic model must be capable of dealing with every domain
without ambiguity problems.

This then raises the question of why programming is not undertaken using natural languages.
In Bruckman and Edwards (1999), authors found 314 errors that occurred with attempts to use a
natural language as described. These errors present, when source code cannot be distinguished
from English, a conclusion based on analysis of children’s interactions with the MOOSE Crossing
tool, a study in which 16 children took part and which was based on the analysis of their errors. The
authors observed these natural language errors when a child provided an incorrect English-like
definition instead of a correct one. Of these errors, 147 were syntax errors, 68 were guessing errors,
58 were interpretation errors, 14 were assuming system awareness errors, and 7 were operator
precedence errors. These results indicate that a clearly defined naturalistic language should be
defined to avoid ambiguity.

A naturalistic language must manage indirect references regardless of whether there are tem-
poral references such as “when a value is greater than 10,” spatial references such as “the houses
with garden,” or reflexive references such as “the previous operation.” To do this, a naturalistic
language must cover not only nouns and verbs, but also their modifiers by providing more robust
support for the use of phrases such as noun or verb phrases.

From the studies reviewed here, it can be concluded that a naturalistic model is reported as a
conceptual proposal only in Lopes et al. (2003). Therefore, a definition of a programming model
that not only enables the integration of natural language elements into programming languages,
but also provides a sufficiently high level of formality in order that formal and unambiguous pro-
gramming languages can be defined is required.
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