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Abstract: In recent years, there have been significant changes in weather patterns, mainly caused by 
sharp increases in temperature, increases in carbon dioxide, and fluctuations in precipitation levels, 
negatively impacting agricultural production. Agricultural systems are characterized by being vul-
nerable to the variation of biophysical and socioeconomic factors involved in the development of 
agricultural activities. Agent-based models (ABMs) enable the study, analysis, and management of 
ecosystems through their ability to represent networks and their spatial nature. In this research, an 
ABM is developed to evaluate the behavior and determine the vulnerability in the sugarcane agri-
cultural system; allowing the capitalization of knowledge through characteristics such as social abil-
ity and autonomy of the modeled agents through fuzzy logic and system dynamics. The methodol-
ogy used includes information networks for a dynamic assessment of agricultural risk modeled by 
time series, system dynamics, uncertain parameters, and experience; which are developed in three 
stages: vulnerability indicators, crop vulnerability, and total system vulnerability. The development 
of ABM, a greater impact on the environmental contingency is noted due to the increase in green-
house gas emissions and the exponential increase in extreme meteorological phenomena threaten-
ing the cultivation of sugarcane, making the agricultural sector more vulnerable and reducing the 
yield of the harvest. 

Keywords: agent-based modeling; agricultural vulnerability; climatic change; system dynamics; de-
cision-support system; sugarcane vulnerability 
 

1. Introduction 
In Mexico, agricultural activities have a greater impact on the rural and industrial 

environment as it is the main source of income and food supplies through the exploitation 
of natural resources and positions itself as one of the main means of employment for the 
rural population [1]. 

Agricultural activities that heavily depend on the weather have a high vulnerability 
because of changes in climate patterns, mainly rainfall and extreme weather phenomena 
such as drought, extreme rain, hailstorms, and cyclones are having negative effects on 
agricultural activities causing the loss of crops globally and a decrease in food security 
[2]. The main impacts on the agricultural sector include, but are not limited to, severe 
damage to crops, soil erosion, inability to cultivate due to soil water saturation, adverse 
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effects on water quality, water stress, and increased death of livestock [3]. Nevertheless, 
when speaking of the vulnerability of agricultural activities to climate change, not only 
extreme meteorological phenomena should be considered but also the expected environ-
mental impacts such as incidence of forest fires, increase in pests and diseases, problems 
with water quality, and temperature variation; this results in lower crop yields caused by 
heat in warmer environments. As weather conditions change, the behavior of production 
areas should adapt to new changes and increasingly depend on the availability of water, 
mainly plants that do not have an irrigation system and are dependent on rainwater. An 
increase in the vulnerability rate among agricultural producers is therefore estimated due 
to the limited access to physical and material resources that make it possible to deal with 
environmental changes. 

In this regard, agribusiness sugarcane has great potential for mitigating climate 
change through diversification in cogeneration and sustainable production of by-products 
as an effective means of curbing greenhouse gas emissions through the use of NPK (nitro-
gen-phosphorus-potassium) fertilizers [4]. Global food production contributes 26% to 
greenhouse gas emissions, of which 7.02% is from crop production [5]. According to the 
Food and Agriculture Organization, pollutant emissions from agriculture in developing 
countries rose 32% between 1990 and 2005, and this trend is expected to continue to meet 
the demands of food products by a growing population. 

The main objective of this study is an assessment of vulnerability to climate change 
in the agricultural sector through agent-based modeling (ABM) by identifying socioeco-
nomic and ecological variables to determine vulnerability and agricultural risk in the cul-
tivation of sugarcane. The categorization of vulnerability is vital in decision making, al-
lows determining the degree of vulnerability-risk existing in the system through the de-
termination and identification of impact variables for the development of scenarios with 
effective adaptation measures to mitigate the impact. The purpose of the research is to 
assist in the decision-making process to maximize crop yields by generating work 
schemes that lead to the development of adaptation and/or mitigation actions to address 
climate change. 

Agent-based models (ABMs) are characterized by their ability to analyze heteroge-
neous agents and their interactions to simulate emergent properties of the system [6]. The 
ABMs comprise several autonomous and independent virtual agents with their own goals 
[7]. The system under investigation is characterized by autonomous and independent 
agents (vulnerability indicator and crop yield agent), which transmit information to de-
termine the vulnerability of the system (agent-total vulnerability of the system). While the 
flow of information handles virtual agents defined by variables that form information net-
works represented by models of the system dynamics and fuzzy logic. Based on the above, 
the research hypothesis is whether the development of the decision support system for 
the assessment of the agricultural vulnerability of sugarcane will allow the generation of 
alternative scenarios through an agent-based approach to minimize levels of vulnerability 
by means of the implementation of a reactive agent. 

The sections that define this research are: Firstly, Background, this section shows the 
review of the literature on the impact of climate vulnerability in the agricultural sector. It 
then describes the methodology used in developing research based on intelligent agents 
and artificial intelligence techniques in Materials and Methods. In the Results and Discus-
sion section, the research contributions are shown under the context of climate change in 
the sugarcane agricultural system. Finally, in the Conclusion section, the contribution of 
the proposed methodology to the identification of the critical variables of the system in 
the vulnerability assessment is mentioned. 

2. Background 
The effects of climate change on the agricultural supply chain have been com-

pounded over the past 20 years by increasing demand for food and increasing population 
density. The expansion of arable land, pastures, plantations, and urban areas in the world, 
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as well as the increase in the consumption of energy, water, and fertilizers, have led to 
changes in the land cover through the development of uncontrolled agriculture and the 
use of biofuels, which cause many environmental and socio-economic impacts such as 
greenhouse gas emissions, water availability, and pollution, deforestation, loss of biodi-
versity, loss of access to land [8]. 

The effects generated by climate change have had serious repercussions on the envi-
ronment, mainly impacting agricultural systems. These impacts are mainly based on var-
iations in variables such as temperature and precipitation levels. As a consequence, these 
variations have significant impacts on crops, with grain crops being the most affected by 
phenomena such as droughts and heat waves. The latter has the greatest impact on flow-
ering, reproductive phase, and crop yields due to its influence on crop physiological pro-
cesses such as pollination and photosynthesis at the soil level, generating crop losses; heat 
stress in crops indicates that even moderate increases in temperature reduce the yield of 
crops such as corn, beans, rice, and peanuts. High night temperatures can negatively in-
fluence crop yields. The incidence of weather events produces significant changes in crop 
yields, mainly affecting the economic sector of the agricultural supply chain [9–12]. 

Extreme weather events are recorded in Central America, which severely affect agri-
culture and rural livelihoods [13]. Government agencies have taken action to combat cli-
mate threats, such as implementing environmental policies to reduce uncertainty [14] 
through the management of agricultural resources [15]. Likewise, soil degradation [16] 
has a significant impact on agricultural activities and makes it impossible to reproduce 
plants, which is why it is necessary to develop soil management practices to reverse this 
problem [17]. 

Determining factors that increase risk requires a comprehensive analysis of the phys-
ical condition of the region, land use, biodiversity, and period [18,19]. Implementing agro-
climate models enables the quantification of the impacts, the optimization of the manage-
ment of agricultural practices, and predicting future trends in crop behavior [10,20,21]. 

A vulnerability assessment system in an agricultural system that combines biophys-
ical and socio-economic aspects was developed in western Austria [20]. The research aims 
to quantify the effects of the biophysical aspects (variability of climate change, soil, topog-
raphy, and agronomic conditions). With the development and application of models to 
minimize the impact of the vulnerability in agriculture due to climate change, areas of 
improvement (fertilization, irrigation types, etc.) in agricultural production systems have 
been discovered to increase their profitability. 

Within agricultural evaluation systems, decision support systems (DSS) play an im-
portant role in agricultural decision-making to improve agricultural productivity. [21] De-
veloped a multi-criteria analysis where they evaluate and select the most suitable support 
system for sustainable agribusiness. The analysis was developed in fuzzy logic through 
the construction of linguistic variables modeled by fuzzy sets with the objective is to de-
termine sustainable agricultural performance by analyzing three critical factors, including 
(i) the technology employed; (ii) organization including type and scale of farm and 
budget; and (iii) environment. The authors implemented the model developed in the Aus-
tralian region, where agricultural productivity is threatened by increasing degradation of 
soil quality, increasing cost of nutrient inputs and land uses. In addition to the three criti-
cal factors mentioned above, the authors added criteria (iv) economic and (v) social. As a 
result of the research, it was shown that the technology factor offers a greater competitive 
advantage to maximize agricultural yield, therefore; the study provides an effective meth-
odology for agricultural management evaluation. 

In the evaluation of agricultural systems, resource limitation is a preponderant factor; 
[22] developed a model for planning the performance of irrigation systems in Turkey. The 
model estimates daily reference evapotranspiration values through models developed in 
deep learning-based gated recurrent units (GRUs) and tree-based models. The developed 
models consider meteorological variables such as maximum and minimum temperature, 
wind speed, relative humidity, dew point temperature, and duration of sunshine times. 
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The models obtained determined that the maximum temperature was determinant in the 
estimation of evapotranspiration. 

Platforms powered by models based on agricultural information systems were de-
veloped using artificial intelligence to characterize and analyze climate vulnerability [23]. 
These models can estimate crop production and yield and quantify environmental varia-
bles such as water and nitrogen balances, organic substances, greenhouse gas emissions, 
etc. These models are supported by information systems based on vulnerability indicators 
to identify climate-relevant risks during the management of agricultural activity [24]. The 
agro-climatic indicators are generated through simulations of climatic conditions that rep-
resent impact variables that characterize the system (length of heatwaves, number of frost 
days, precipitation, and temperature). The results achieved make it possible to identify 
areas of opportunity that minimize the risks and impacts on agriculture in the face of cli-
mate change. 

Models have been developed based on the distribution of climate classes and based 
on data on the biodiversity of the climate in a given area [25]. The data show a high level 
of bias. For this reason, it is necessary to use alternative sources of information to reduce 
the distortion. The modeling was carried out through the knowledge of the expert, with 
six categories defined to describe the diversity of the climate based on the influencing 
variables (temperature and precipitation) of the model to reduce the risk of bias during 
modeling. 

Studies have been developed on the analysis of multi-agent systems for ecosystem 
management and found that the greatest advantage of agent-based modeling (ABM) is 
the combination of spatial nature and the ability to represent networks [26]. Benefits of 
implementing ABM include: (i) ability to couple social and environmental models, (ii) 
ability to examine environmental management strategies, and (iii) ability to model indi-
vidual entities in decision making through their interactions; Therefore, the greatest chal-
lenge is to show that ABMs can provide new insights into the complex natural systems 
[6]. ABMs are typically used to model land use, land cover, and information exchange 
over networks that are integrated by agents on a larger or smaller scale; where the agents 
interact directly to weave every link within the network [27]. ABMs are used to create new 
models that adopt different approaches that include microeconomic models and empirical 
rules [28,29]. Implementing ABM integrates economic, social, and environmental compo-
nents [30]. 

The methodologies analyzed in the background to address this problem are mostly 
integrated by models and information systems based on environmental indicators for the 
management of agricultural practices, characterization of biophysical aspects, and farm 
management, mainly. Among the techniques used for the development of these investi-
gations are agroclimatic models developed through simulation and fuzzy logic with the 
objective of environmental characterization. The methodology developed in this research 
provides a macro-model based on ABM’s that integrates experience and knowledge of the 
actors involved (fuzzy logic) and simulation of uncertain parameters and decision varia-
bles (system dynamics). The interaction of the techniques used above allows the commu-
nication of information networks made up of environmental and socioeconomic factors 
for the development of indicators that allow a dynamic and systemic study of the agricul-
tural system under study. 

The previous studies address the problem of climate change in agricultural systems 
under an environmental approach using modeling and simulation; however, the results 
of these approaches focus on the development of agroclimatic indicators constructed from 
climate simulations, handling socioeconomic factors as isolated factors, and in some cases, 
these are not considered in the modeling. 

For this reason, the proposed systems in this research include an integral analysis of 
all the elements of the agricultural system under study, allowing an area of opportunity 
to comprehensively identify the behavior pattern of the agricultural system facing climate 
change. The present research proposes an agent-based model considering environmental, 
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socioeconomic, and agricultural factors for the global integration of the agricultural sys-
tem under study based on experience, knowledge and modeling the uncertainty of the 
system through fuzzy logic and system dynamics. Agent-based modeling offers the crea-
tion of new models at micro and macro levels that allow the evaluation of agricultural 
vulnerability and risk through scenarios of quantitative impacts generated by climate 
change to propose work schemes that lead to adaptation actions. 

3. Materials and Methods 
The following section describes the three primary stages of the methodology used in 

this work, as shown in Figure 1. In the first stage, the socio-economic and environmental 
variables that determine vulnerability and agricultural risk were identified. With the var-
iables obtained, it is proposed to develop a model for assessing vulnerability in the agri-
cultural sector using an agent-based modeling approach (ABM) called Agent Vulnerabil-
ity Indicators, which comprises four networks developed by system dynamics. Each net-
work includes information on land use, water resources, land value, and gas emissions. 
In the second stage, the Crop Agent is developed with the help of artificial intelligence 
techniques (fuzzy logic) to determine the vulnerability of the study crop (sugarcane). The 
flow of information between the agents of stages 1 and 2 then determines the global vul-
nerability of sugarcane in the agricultural sector (Stage 3). 

 
Figure 1. Methodology for determining total system vulnerability based on intelligent agents. 

To achieve a better representation of the agricultural system, the developed model 
deals with complex representations for the decision-making process, considering risk, 
learning, and social interactions between agents. The multi-agent model, therefore, has a 
knowledge base which is composed of: (i) probability distributions which are defined by 
a database, and (ii) specialist knowledge. 

According to the ABM approach, the agents that represent each of the stages of the 
multi-agent system are entities that demonstrate autonomy and proactivity (active 
agents). While passive entities are represented by each of the variables that integrate the 
information networks (sub-models of system dynamics and fuzzy logic). Table 1 describes 
the agents used in the multi-agent system and their major functions according to the clas-
sification of Yancato-Gurmán [31]. 

Table 1. Agent classification. 

Agent Role Activities 

Vulnerability indicators Active 
Models the behavior of networks to bring infor-

mation to the decision center. 

Crop vulnerability Decision 
It is in charge of decision-making when modifying 
agricultural practices to minimize vulnerability in 

the crop. 
Non-nutritional disor-

ders 
Reactive It provides a stimulus-response to unexpected 

events in the system. 



Mathematics 2021, 9, 3061 6 of 34 
 

 

Total system vulnerabil-
ity Active 

Models the information obtained by the agents to 
determine the level of vulnerability in the system. 

Information network var-
iables (population of 

agents) 
Passive Store information through databases. 

Each of the stages of the methodology is described below. 

Stage 1. Evaluation of vulnerability in the agricultural sector: Agent of Vulnerability In-
dicators 

The agent-based model (ABM) developed is a stochastic model in which the variables 
store and represent random quantities that are defined by probability distributions that 
change over time. The system dynamics methodology [32] enables the modeling and sim-
ulation of complex systems such as agricultural systems. This enables the behavior of the 
system to be simulated by feeding back information between the individual variables to 
understand and improve the interaction of their components [33]. 

For the modeling of the vulnerability indicator agent, the causal diagram was devel-
oped to represent the structure of the system and the flowchart that can simulate its be-
havior (Figure 2). 

 
Figure 2. Causal diagram of vulnerability indicators agent model. 
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3.1. Conceptualization 
For the realization of the causal diagram (Figure 2), the major variables that describe 

the vulnerability indicators in economic and environmental aspects were identified. The 
indicators [34] are used to organize and systematize information for planning, evaluation, 
and decision-making and they enable the creation of information systems based on census 
data from regional, national, or supranational contexts. 

The Agricultural land yield model makes it possible to estimate the availability of land 
for the development of agricultural activities and the degree of vulnerability in using ag-
ricultural land due to overuse or deterioration of land. The Agriculture value model can 
estimate the added value of agricultural activities from the flow of information related to 
productivity in the agricultural sector, problems in developing agricultural activities, the 
value of the harvest, hours worked and insurance for agricultural development. 

The Agricultural water resources efficiency model enables the vulnerability of water re-
sources in the agricultural sector to be estimated, as around 79% of agricultural activities 
carried out in Mexico do not have an irrigation system [35]. The Environmental contingency 
model considers greenhouse gas emissions and serious environmental phenomena which, 
due to their frequency and magnitude, endanger the agricultural harvest. 

The variables that feed the Vulnerability Indicator Agent model are modeled by 
probability distributions describing historical data for the period 2001–2018 [36–47]. 

Table 2 describes the main variables used in the models that make up the agent of 
the vulnerability indicators [36,38,40,41,48–51]. 

Table 2 shows the causal diagram of the Vulnerability Indicator Agent model. The 
relationships between the variables are represented by arrows accompanied by a positive 
(+) or negative (-) sign, indicating the type of influence one variable has on another. Posi-
tive relationships indicate that an increase or decrease in variable A has the same effect on 
variable B; Negative relationships indicate that an increase or decrease in variable A has 
an inverse effect on variable B [52]. 

Table 2. Variables of vulnerability indicators agent model. 

Variable Definition Units 

Agricultural Ground Extension of agricultural land Ha 
Total Ground Extension of land in Mexican territory Ha 

Area affected by Forest 
Fires 

Extent of land affected by forest fires Ha 

Physical Degradation 
Soil degradation caused by physical aspects: Compaction (Fc), Loss of func-
tion and productivity (Fu), Waterlogging (Fa), Decreased water availability 

(Fd), Embedding and sealing (Fe) 
Ha 

Chemical Degradation 
Chemical-originated soil degradation: Reduction of fertility and organic 

matter content (Qd), Pollution (Qp), Salinization and/or alkalization (Qs), 
Eutrophication (Qe) 

Ha 

Overgrazing Agricultural area affected by intensive grazing for a long period Ha 
Eolic Erosion Surface wear due to wind Ha 

Hydric Erosion 
Segregation and sedimentation of water particles in the soil due to rain or 

surface runoff 
Ha 

Uncultivated Area 
Area unsuitable for agricultural activities due to severe or extreme degrada-

tion 
Ha 
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Planted/Harvested 
Area 

Agricultural area planted and harvested Ha 

Farmland Extension of land available for cultivation Ha 
Cereal Land Extension of land for cereal production Ha 
Crop Land Extension of permanent land for cultivation Ha 

Cereal Yield Cereal yield per hectare harvested Kg/Ha 
Agricultural Land Yield Agricultural area yield per hectare Kg/Ha 
Agricultural Production 

Unit 
Agricultural statistical unit for measuring agricultural production in a given 

area 
m2 

Field Support Area 
Agricultural area with some kind of support for carrying out agricultural ac-

tivities 
Ha 

Agricultural Problems 
Main problems for the development of agricultural activities, directly re-

lated to the farmer 
- 

Insurance 
Agricultural area with insurance for agricultural activities. It can have dif-

ferent types of origin 
Ha 

NCPI 
National Consumer Price Index, indicator to estimate the evolution of prices 

of properties and services in Mexico 
- 

Indexes Indicator to estimate food production, hours worked, etc. % 
GDP Gross Domestic Product, base 2013 MUS$ 

Agriculture Value Agricultural value added in relation to GDP MUS$ 

Water Source 
Origin of water according to its type of source: water well, storage, river, 

dam, spring, open water well, etc. 
Hm3 

Water Supplying Underground and superficial water supply Hm3 
National Water Availa-

bility 
Volume of available water, which is distributed to various sectors Hm3 

Types of Water 
Volume of water according to its classification: white water, treated 

wastewater, brackish water, raw sewage, etc. 
Hm3 

Water Efficiency Efficiency of water resources for the development of agricultural activities Kg/m3 

Emergency Risk Situa-
tion 

Natural events classified as a state of emergency or disaster which put agri-
cultural activities at risk. includes: forest fires, storms, cold front, frost, cy-

clones, earthquakes, droughts 
Events 

Agriculture GHG Emis-
sions 

Greenhouse gases emissions (GHG) produced by the development of agri-
cultural activities 

Gt 
CO2eq 

CO2 Emissions 
Carbon dioxide emissions; colorless, dense, non-reactive gas that is part of 

the closest layer of the atmosphere to Earth 
Gt 

CO2eq 

CH4 Emissions Methane emissions produced by the decomposition of organic matter 
Gt 

CO2eq 

N2O Emissions Nitrous oxide emissions are the main pollutant of the ozone layer 
Gt 

CO2eq 

HFC Emissions Hydrofluorocarbons are the third generation of refrigerant gases 
Gt 

CO2eq 
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PFC Emissions 
Perfluorocarbons are synthetic compounds containing fluorine and carbon 
atoms. They are colorless gases that are not flammable at room temperature 

Gt 
CO2eq 

SF6 Emissions 
Sulfur hexafluoride is an inorganic compound that under normal conditions 

of pressure and temperature is a non-toxic and non-flammable gas. SF6 is 
five times heavier than air. 

Gt 
CO2eq 

Ton/Ha: tons per hectare; m2: square meters; MUS$: millions of dollars; Hm3: cubic hectometer; Kg/m3: kilograms per cubic 
meter; Gt CO2eq: gigatons of carbon dioxide equivalent. 

3.2. Formulation 
To formulate the model, predictions of the variables of interest were made and the 

equations for each subsystem were determined. To evaluate the behavior of the system 
over time, the trend of the time series used in the simulation model was determined. Table 
3 shows the type of trend for each analyzed time series and the mathematical model used 
when t > 0. 

Table 3. Analysis of trend of vulnerability indicators agent. 

Time Series Kind of Trend Mathematical Model 
Total ground No trend 9299303 

Agricultural ground Downward 69.17% 54.89 < % < 73.38 

Area affected by fores fires Upward ݂(ݐ; ,ߤ (ߪ = ߨ2√(0.242966)ݐ1 ݁ି(୪୬  (௧)ିଷସଽ଺ଵ଻)మ ଶ(ଶସଶଽ଺଺)మ൘
 

Land area No trend 12,578,2926 

Cereal yield Downward ݂(ݐ) = ߨ2√1754 ݁ି(௧ିଶଷ଺ଽ)మ ଶ(଻ହସ)మ൘
 

Agricultural production unit No trend 20 

Field support area; Ha Upward ݂(ݐ) = ߨହ√2ܧ18.81 ݁ି(௧ିଵଶ଻.଻ாఱ)మ ଶ(଼.଼ଵாఱ)మ൘
 

Insurance application Upward 3.79% 3.15 < % < 5.82 
Obtaining insurance Upward 9.48% 9.41 < % < 9.67 

National Consumer Price Index Upward ݂(ݐ) = ߨ2√134.9 ݁ି(௧ି଺ଽ.ସଷ)మ ଶ(ଷସ.ଽ)మ൘
 

Inflation No trend 6.5% 

Productivity index Upward ݂(ݐ) = ߨ2√12.47 ݁ି(௧ିଽଽ.଼ହ)మ ଶ(ଶ.ସ଻)మ൘
 

Hours worked index Upward ݂(ݐ) = ߨ2√16.08 ݁ି(௧ିଵ଴ଷ.଼)మ ଶ(଺.଴଼)మ൘
 

Harvest index Upward ݂(ݐ;λ, k) = 3.0182.5 ൬ t82.5൰ଷ.଴ଵିଵ eି( ୲଼ଶ.ହ)య.బభ
 

 

Food production index Upward ݂(ݐ;λ, k) = 2.677.7 ൬ t77.7൰ଶ.଺ିଵ eି( ୲଻଻.଻)మ.ల
 

GDP (fourth quarter of 2018) No trend 18,512,407 

Production value index Upward ݂(ݐ) = ߨ2√10.014 ݁ି(௧ି଴.ଵଷ଻)మ ଶ(଴.଴ଵସ)మ൘ ∗  ܽܲ ܤܫܲ

Water availability for agricultural No trend 76% 

Underground suppliying(UndS) Upward ݂(ݐ; ,ߤ (ߪ = ߨ2√(23.6)ݐ1 ݁ି(୪୬  (௧)ିହ଴ସ.଼)మ ଶ(ଶଷ.଺)మ൘
 

Superficial suppliying (SupS) Upward ݂(ݐ; ,ߤ (ߪ = ߨ2√(162.4)ݐ1 ݁ି(୪୬  (௧)ିଶଷ଼ଷ)మ ଶ(ଵ଺ଶ.ସ)మ൘
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Planted Area Upward ݂(ݐ) = ߨ଺√2ܧ11.41 ݁ି(௧ିଶ.ଵଶళ)మ ଶ(ଵ.ସଵாల)మ൘
 

Harvested Area Upward ݂(ݐ; λ, k) = 12.261.97E଼ ൬ t1.97E଼൰ଵଶ.ଶ଺ିଵ eି( ୲ଵ.ଽ଻୉ఴ)భమ.మల
 

Fores fires Upward ݂(ݐ) = ߨ2√12204 ݁ି(௧ି଻ଽ଻ଵ)మ ଶ(ଶଶ଴ସ)మ൘
 

Drougth Upward ݂(ݐ) = 0.004݁ି଴.଴଴ସ௧ 
Earthquake Upward ݂(ݐ) = 0.0229݁ି଴.଴ଶଶଽ௧ 

Cyclone Upward ݂(ݐ) = 0.003݁ି଴.଴଴ଷ௧ 
Cold front Upward ݂(ݐ) = 0.0085݁ି଴.଴଴଼ହ௧ 

Thunderstorm Upward ݂(ݐ) = 0.025݁ି଴.଴ଶହ௧ 

Cereal land Downward ݂(ݐ; λ, k) = 14.630.08 ൬ t0.08൰ଵସ.଺ଷିଵ eି( ୲଴.଴଼)భర.లయ
 

Farmland Downward ݂(ݐ; ,ߤ (ߪ = ߨ2√(0.012)ݐ1 ݁ି(୪୬  (௧)ି଴.ଵ଴଺)మ ଶ(଴.଴ଵଶ)మ൘
 

Agricultural land Downward ݂(ݐ; ,ߤ (ߪ = ߨ2√(0.021)ݐ1 ݁ି(୪୬  (௧)ି଴.ହଶ଻)మ ଶ(଴.଴ଶଵ)మ൘
 

Crop land Downward ݂(ݐ; ,ߤ (ߪ = ߨ2√(0.0024)ݐ1 ݁ି(୪୬  (௧)ି଴.଴ଵ଴)మ ଶ(଴.଴ଶସ)మ൘
 

CO2 Upward ݂(ݐ) = 13438݁ିଵଷସଷ଼௧ 
CH4 Upward ݂(ݐ) = 64986݁ି଺ସଽ଼଺௧ 
NO2 Upward ݂(ݐ) = 32669݁ିଷଶ଺଺ଽ௧ 

Hydric erosion Upward ݂(ݐ) = ݀݊ݑ݋ݎ݃ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ ∗ 0.119 
Eolic erosion Upward ݂(ݐ) = ݀݊ݑ݋ݎ݃ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ ∗ 0.0949 
Overgrazing Upward ݂(ݐ) = ݀݊ݑ݋ݎ݃ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ ∗ 0.028 

Physical degradation Upward ݂(ݐ) = ݀݊ݑ݋ݎ݃ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ) ∗ 0.057)+  ݏ݁ݎ݂݅ ݏ݁ݎ݋݂ ݕܾ ݀݁ݐ݂݂ܿ݁ܽ ܽ݁ݎܣ
Chemical degradation Upward ݂(ݐ) = ݀݊ݑ݋ݎ݃ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ ∗ 0.1783 

The agent model for vulnerability indicators has a period (t > 0) for 12 sugarcane 
harvest cycles and was developed in the Anylogic® Personal Learning Edition software 
(free software for student version) in the library for dynamic systems. Below is the math-
ematical formulation for the basic elements of the model where time series are used for its 
development. 

(a) Degraded soil (DS). The variable is represented by the flow of variables: hydric 
erosion (HE), wind erosion (WE), overgrazing (Og), chemical degradation (CD), and phys-
ical degradation (PD). ݀ݐ݀ܵܦ = ௧ୀଵݏܦ + ܧܪ) + ܧܧ + ܱ݃ + ܦܥ + (1) (ܦܲ

(b) Agricultural land available (AreaAgr), indicates the land that is available for the 
development of agricultural activities, except for the non-cultivable area due to soil deg-
radation and the agricultural area with harvest loss due to weather events. ݀ݐ݀ݎ݃ܣ ܽ݁ݎܣ = ௧ୀଵݎ݃ܣܽ݁ݎܣ + −(݈ܾ݈݁ܽ݅ܽݒܣ ܽ݁ݎܣ) ൤݀ݐ݀ܵܦ + ܽ݁ݎܣ ݀݁ݐ݈݊ܽܲ) − ൨ (2)(ܽ݁ݎܣ ݀݁ݐݏ݁ݒݎܽܪ

݈ܾ݈݁ܽ݅ܽݒܣ ܽ݁ݎܣ = ݀݊ܽܮ ݈ܽ݁ݎ݁ܥ + ݈݀݊ܽ݉ݎܽܨ + +݀݊ܽܮ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ  ݀݊ܽܮ ݌݋ݎܥ
(3)

(c) Field without supported area (FWSA). Area without government and/or private 
support for the development of agricultural activities. 



Mathematics 2021, 9, 3061 11 of 34 
 

 

ܣܹܵܨ = ൬݀ݐ݀ݎ݃ܣܽ݁ݎܣ − ൰ܽ݁ݎܽ ݐݎ݋݌݌ݑݏ ݈݀݁݅ܨ ∗ (4) ݐܷ݅݊ ݊݋݅ݐܿݑ݀݋ݎܲ ݈ܽݎݑݐ݈ݑܿ݅ݎ݃ܣ

(d) Agricultural value (AgrValue). The total value of agriculture concerning GDP; in-
cludes time series food production index (FPi), production value index (PVi), harvest in-
dex (Hi), hours worked index (HWi), national expected consumer price index (NCPIexp), 
productivity index (Pi) and the problems for the development of the agricultural activities 
index (PRi). ݀ݐ݀݁ݑ݈ܸܽݎ݃ܣ = ௧ୀଵ݁ݑ݈ܸܽݎ݃ܣ + ݅ܲܨ) + ܸܲ݅ + ݅ܪ + ܹ݅ܪ + ݌ݔ݁ܫܲܥܰ + ܲ݅ − ܴܲ݅) ∗ (5) ܲܦܩ

(e) Hydric resources available (HyRes). Volume from different supply sources (well, 
river, spring, water dam, open-air water well, water bank, and other sources). ݀ݐ݀ݏܴ݁ݕܪ = ௧ୀଵݏܴ݁ݕܪ + ൬ ߨ2√19722 ݁ି(௫ିସ.଺ସாఱ)మ ଶ(ଽ଻ଶଶ)మ⁄ ൰ 0.76 (6)

(f) Water Resource Efficiency (WREff) indicates the efficiency of underground and 
surface water supply in the agricultural sector for the geographical area of the study case. ܹܴ݀ݐ݂݂݀ܧ = ݂ܧܴܹ ௧݂ୀଵ + ൤൬ݐ݀ݏܴ݁ݕܪ݀ ߨ2√10.0272 ݁ି(௫ି଴.଻଺ଷ଻)మ ଶ(଴.଴ଶ଻ଶ)మ⁄ ൰ (ܷ݊݀ܵ + ൨(ܵ݌ݑܵ  (7)

(g) Greenhouse gas emissions (GHG). Total greenhouse gas emissions from develop-
ing agricultural activities. ݀ݐ݀ܩܪܩ = ௧ୀଵܩܪܩ + ෍(ܵܨ଺ + ܥܨܲ + ଶܱܰ + ଶܱܥ + ସܪܥ + (8) (ܥܨܪ

(h) Environmental Disasters (ED). Includes meteorological phenomena (drought, 
earthquake, cyclone, cold front, and thunderstorm) and forest fires that have been cata-
loged in a state of emergency or a disaster and endanger the safety of the harvest. ݀ݐ݀ܦܧ = ௧ୀଵܦܧ + ෍(ݏݐ݊݁ݒ݁ ݇ݏ݅ݎ ݎ݋ ݕܿ݊݁݃ݎ݁݉ܧ) (9)

3.3. Implementation 
The Vulnerability Indicator Agent Model was developed in the Anylogic® software 

in the system dynamics library and is simulated throughout twelve cycles. The networks 
that incorporate vulnerability indicator agents are described below: 

The network for available agricultural land makes it possible to estimate the main 
types of soil degradation in the agricultural sector and to determine the non-cultivable 
area. The available agricultural area is determined as a potentially arable area, whereby 
this strongly and extremely affected area is discarded. Thus, determining the performance 
and vulnerability of the agricultural area. 

The agricultural value network values the agricultural area with the support of the 
field and activities with some kind of insurance for its development. The subsidies granted 
to the field are directly related to the specific characteristics of the farmers (age, gender, 
level of education, access to technology, etc). Therefore, the agent was assigned a logistic 
probability function based on the farmer’s attributes. The lack of rural support for agri-
cultural activity development is one factor that increases vulnerability to the value of ag-
riculture. The level of vulnerability to the value of agriculture can then be estimated using 
the agricultural performance indices. 

The agricultural water resource efficiency network is determined from the amount 
of water available to the agricultural sector from both underground and surface sources, 
as well as the agricultural area where an irrigation system is used. 
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The environmental contingency network comprises two modules. The first module 
determines the amount of GHG emissions from the agricultural sector. The second mod-
ule makes it possible to estimate the amount of potentially hazardous weather events. 
Stage 2. Development of the cultivation model: Sugarcane (Study case) 

106 crops are harvested in the state of Veracruz; with a production of 21,282,823.66 
tons and a harvested area of 290,600.64 ha for 2018, sugarcane is the most harvested crop 
in the region [51]. The case study was developed in the coastal plain in the southern zone 
of the Sotavento plain in the Mexican state of Veracruz. Whose latitude and longitude are 
18 ° 36’35.8 “N 95 ° 31’34.7” W. 

Due to the continuity of the Los Tuxtlas mountain region, the soil is varied and has 
flat parts near the coast and on hills. It is a warm, regular climate with an average temper-
ature of 25 °C; the average annual rainfall varies between 2000 mm and covers an area of 
13,208 hectares. 

The Simpson Crop Diversity Index was used to determine whether the study area 
might have agricultural vulnerability. At represents the total harvested area in Ha, Nc the 
total number of reported crops, Aj the sugarcane harvest in Ha. The relationship between 
the Simpson crop diversity index and agricultural vulnerability is as follows: when the 
Simpson index is close to 1, there is low vulnerability, because there are a high number of 
crops. Contrarily, because the index is close to 0 the vulnerability will be high due to the 
small number of crops. ݀ܫ = 1 − (∑ ଶݐܣଶே௖௜ୀଵ(݆ܣ  (10)

The index obtained is 0.7565, which indicates that the approximate vulnerability of 
0.32 is classified as low to moderate [48]. To determine the vulnerability of sugarcane pro-
duction, the Crop Vulnerability Agent model was developed using fuzzy logic. 

Figure 3 shows the methodology used. 

 
Figure 3. Crop vulnerability agent. 

Agent-based modeling (ABM) makes it possible to propose different scenarios with 
active entities and to see what is happening in a problem, i.e., to examine the possible 
states of the system under investigation. ABMs are a proprietary artificial intelligence 
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technology with the ability to emulate entities, processes, and uncertain flows in distrib-
uted environments where each entity makes a local decision based on its knowledge and 
behavioral patterns [7]. 

The Crop Vulnerability Agent model comprises three fuzzy logic models: crop yield, 
uncertain parameters, and crop vulnerability. The crop yield model determines the crop 
yield under optimal production conditions concerning agricultural practices and soil nu-
trition. The uncertain parameters model enables the modeling of uncontrollable variables 
related to climatological phenomena that affect agricultural production. The crop vulner-
ability model includes variables related to agricultural production. If the vulnerability is 
greater than or equal to 0.54, it is assumed that there is a high vulnerability in agricultural 
production related to non-nutritional disorders as physical and chemical indicators of the 
edaphic environment related to precipitation and water storage capacity through the soil 
[53]. Otherwise, if the vulnerability of the crop is less than 0.54; the results obtained in 
stage 1 can be used to determine the overall vulnerability of the agricultural sugarcane 
production system. 

Fuzzy logic models are designed in MatLab® using the Mamdani inference engine, 
which comprises membership functions for the twenty-one input variables and four out-
put variables. Fuzzy logic is based on implementing linguistic variables for processing 
imprecise and fuzzy natural language, which comprises numbers and human expressions 
[54]. 

A linguistic variable takes on values with words that make it possible to describe the 
state of an object or phenomenon. These words can be represented by fuzzy sets [55]. 
Membership functions are used to define the value of the associated linguistic variable, 
i.e., they indicate the extent to which the linguistic variable belongs to the fuzzy set. 

Figure 4 graphically describes the fuzzy sets corresponding to each linguistic variable 
of the developed fuzzy models. 

 
Figure 4. Graphic representation of fuzzy models. 

The fuzzy sets for modeling the membership functions of the variables (input-output) 
are modeled by a triangular function (Tr) from three points and a trapezoidal function (T) 
from four points. The functions that represent these equations are shown below: 

;ݎ)ݎܶ ܽ, ܾ, ܿ) =
۔ۖەۖ
ۓ 0;             ܽ < 1ݎ − ൬ܾ − ܾݎ − ܽ൰ ;   ܽ ≤ ݎ ≤ ܾ1 − ൬ݎ − ܾܿ − ܾ൰ ;   ܽ ≤ ݎ ≤ ܿ0;             ܿ > ݎ ۙۘۖ

ۖۗ
 (11)
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;ݐ)ܶ ܽ, ܾ, ܿ, ݀) =
۔ۖۖەۖۖ
ۓ 0; ݐ             < ܽ1 − ൬ܾ − ܾݐ − ܽ൰ ;   ܽ ≤ ݐ ≤ ܾ1;          ܾ ≤ ݐ ≤ ܿ1 − ൬ݐ − ܿ݀ − ܿ൰ ;   ܿ ≤ ݐ ≤ ݀0; ݐ             > ݀ ۙۖۘۖ

ۖۗۖ
 (12)

In the fuzzy logic process, the characterization of system behavior uses inference 
rules that are established through expertise and knowledge to characterize the behavior 
of the system [56]. The inference rules are based on the so-called fuzzy sets and a fuzzy 
inference system based on rules of the form IF-THEN, which are created using a Fuzzy 
Associative Memory (FAM) [57]. 

The FAM are matrices that represent the consequences of each rule defined for each 
combination of two or more inputs and enable a clear graphical representation of the re-
lationships between two linguistic variables, input, and output variables. For this, all the 
possible combinations of rules with the input variables must be explicitly specified. 

Table 4 describes the variables used in designing fuzzy logic models, and each of 
them indicates the unit of measurement and the type of variable (input or output) in the 
expert system [4,54,58,59]. 

Table 4. Variables of sugar cane model. 

Variable Definition Units Input Output 

V1 Agriculture Type Modality in which agricultural activities are carried out: open 
or protected 

Mode I  

V2 Irrigation Water mode used in the development and reproduction of the 
crop: rainfall or irrigated Mode I  

V3 Irrigation System 
Irrigation system used: gravity, canal, sprinkler, trickle or 
pipeline Mode I  

V4  Plaguicida, V5 
Insecticide 

Agricultural practices for the control of pests that affect the 
crop. The control over these becomes a determinant to ensure 
agricultural production 

Application I  

V6 Nitrogen, V7 
Phosphorus, V8 

Potassium 

Variables refer to soil nutrition; which is an agricultural 
practice which is used to supply nutrients to the soil and the 
roots of the sugarcane, with the aim of maximizing production 
yields and crop quality 

Kg ha-1 I  

Kg P2O5 ha-1 I  

Kg K2O ha-1 I  

O1 Crop Yield Ratio of total production of a certain crop harvested per 
hectare  

Ton/Ha  O 

V9 Meteorological 
Events 

Hydro meteorological phenomena declared as a state of 
“emergency” endangering the safety of the crop 

Events I  

V10 Drought 
Events with lack of rain for a prolonged period of time 
producing dryness in agricultural fields and water shortages Events I  

V11 Wind Uncertain event directly affecting crop yield and quality Km/hr I  

V12 Rain Uncertain event which in turn provides the water for the crops mm/month I  

V13 Temperature Uncertain parameter representing the physical magnitude that 
reflects the amount of heat in the environment 

°C I  

O3 Harvest Risk Interaction of climatic parameters to determine risk in the crop Risk Level  O 
V14 Planted Area Agricultural area on which the crop seed is deposited Ton I  

V15 Harvested Area 
Agricultural area on which production of the desired crop was 
obtained Ton I  

V16 Production Value Monetary value obtained from the sale of agricultural 
production 

Thousands of  
US$ 

I  
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O3 Crop Vulnerability 
Grade to which the crop may be adversely affected by the 
interaction of physicochemical factors, agricultural practices, 
climatic phenomena, etc. 

Vulnerability Level O 

V17 Wilting point 
(PMP) 

Minimum moisture point at which a plant can no longer 
extract water from the soil and cannot recover from water loss 
even if the ambient humidity is saturated 

PMP Level I  

V18 Electric 
Conductivity (CE) 

Measures the concentration of soluble salts present in the soil 
solution dS/m I  

V19 pH 
Measurement to determine the degree of alkalinity or acidity 
present in soil pH Level I  

V20 Organic Matter 
(MO) 

Heterogeneous compound formed by the accumulation of 
partially or completely decomposed materials of animal and/or 
plant origin 

% I  

V21 Interchangeable 
Acidity (Int.Acidity) 

Amount of exchangeable hydrogen ions per fraction of organic 
matter in the soil to determine the amount of improvers for 
optimum pH 

cMol*Kg−1 I  

O4 Soil Efficiency Water storage capacity of the soil based on physicochemical 
indicators of the soil environment 

Efficiency Level  O 

i. Development of the fuzzy logic model to predict crop yield: sugarcane 
The crop yield model makes it possible to predict the behavior of the crop concerning 

the quantity produced (harvest) per plot used (sown area). The model is fed by eight input 
variables that describe the type of agriculture used (open sky or protected), the type of 
irrigation (temporary or watering), and the management of agricultural practices to con-
trol the occurrence of pests and diseases affecting the crops as well as the nutrition of the 
soil by providing the necessary NPK (nitrogen-phosphorus-potassium) nutrients to max-
imize crop yields [53] and the irrigation system used (gravity, channels, sprinkler, drip or 
pipe). 

ii. Development of the fuzzy logic model of uncertain parameters to predict harvest risk 
Characterizing the sugarcane production system is important to control or predict 

the behavior of variables that affect crop yield and to model uncertain parameters that 
may interfere with crop production. The uncertain parameters model increases the rela-
tionship of uncontrolled variables that may be present in sugarcane production and that 
have a positive or negative impact on that performance. These uncertain parameters 
mainly include the variable “meteorological events” such as cyclones, hurricanes, tropical 
storms etc., that have been declared in a state of emergency or “disaster” that could have 
negative consequences on the sugarcane production system. The variable “drought” 
mainly affects the fertility of agricultural soils. 

The variables “wind”, “rain” and “temperature” are the prevailing hydro climato-
logical conditions for the development and growth of the crop; these variables represent 
the uncertain parameters. Uncertain parameters help predict crop productivity behavior 
and determine harvest risk (output variable). The inference rules are validated by open 
data provided by government agencies [4,36,58,60]. 

iii. Development of the fuzzy logic model to predict the vulnerability of the crop: sugar cane 
The crop vulnerability model determines the level of vulnerability of agricultural 

sugarcane production to assess the adaptive capacities and increase the resilience of the 
agricultural production system. The model is fed with historical data for the period 2001–
2018 of sugarcane production, the output variables of the crop yield, and uncertain pa-
rameter models. The rules have been validated using historical open data from the agri-
cultural sugarcane production system in the state of Veracruz [4,58,59,61]. 
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iv. Development of the fuzzy logic model of non-nutritional disorders to predict the efficiency 
of the cultivation soil (Reactive Agent) 

The model of diffuse non-nutritional disorders assumes the role of a reactive agent. 
Its function is to respond to stimuli from the environment in which it is located [62]. If the 
vulnerability score is ≥0.54 and the vulnerability is rated Medium to High, the reactive 
agent will be activated. The relationship of the reactive agent model to crop vulnerability 
is that the higher the soil efficiency, the lower the vulnerability. Non-nutritional disorders 
are indicators of edaphic status and the risk of waterlogging in the agricultural sector [63]. 
The rules are validated by the expertise of the results obtained from previous research on 
geographical and edaphic information on precision agriculture of sugarcane in Mexico 
[53]. 

Appendix A describes the parameters used when designing the networks: input var-
iables, the structure of fuzzy sets (linguistic labels and intervals), knowledge base (infer-
ence rules), and output variables. 

4. Results 
This section presents the results of the development of the agent-based model (ABM). 

Where the major benefits stand out: (i) a combination of social and environmental models; 
(ii) Management of environmental aspects and (iii) Modeling of information networks, 
which are composed of individual entities that serve as decision-making aids. The prop-
erties to consider in the ABMs depend on the goal and focus of the agent. Therefore, the 
decision-making process is adaptable to the characteristics and perspectives of the model. 
The ABM simulation was carried out for a twelve-cycle analysis of sugarcane cultivation. 
Stage 1: Results obtained from the dynamic models (Agent vulnerability indicators) 

The vulnerability indicator is viewed as an empirical model because (i) there is un-
certainty, (ii) information networks are comprising databases, and (iii) emerging phenom-
ena are considered. Emerging phenomena are properties of the system and not of individ-
ual agents; therefore, they cannot be examined in isolation [64]. Furthermore, one disad-
vantage of ABMs is their ability to get complex easily, which is why a sensitivity analysis 
must be performed to validate them. According to Forrester and Senge [65], system dy-
namics models can be tested and validated through dimensional consistency and extreme 
conditions. 

(a) Dimensional consistency is used to analyze whether equations and time series are 
correctly connected. In this case, the output values of the sub-models use kilograms per 
hectare (kg/Ha) to determine the yield of the agricultural crop; kilograms per cubic meter 
(kg/m3) to measure the efficiency of water resources in the agricultural sector; Millions of 
dollars (USD) to determine the value of agriculture concerning GDP, and gigatons of car-
bon dioxide equivalent (Gt CO2eq) to measure the amount of greenhouse gas emissions 
emitted by the agricultural sector. To standardize the output values of the networks for 
the vulnerability, a factor on a scale of 0 to 1 has been assigned. 1 is the highest vulnera-
bility value. 

(b) Extreme conditions make it possible to identify errors in the model structure and 
to analyze the behavior of different scenarios given possible variations. For the analysis 
under extreme conditions, the critical variables of the system were modified: available 
national water, available agricultural land, greenhouse gas emissions, and emergency or 
risk situation. The sensitivity analysis of water availability can estimate the production of 
water resources under different scenarios over time. The value of agriculture and the yield 
of agricultural land can be visualized through a sensitivity analysis of the availability of 
agricultural hectares. The greenhouse gas emissions and the increase in hydrometeoro-
logical events because of climate change enable the environmental vulnerability to be as-
sessed. The variations were made through a sensitivity analysis of five scenarios that pro-
jected the value of the registered trend for 2018. The projections of the scenarios were 
made: eliminating the trend (−100%), halving the trend (−50%) followed the current trend 
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without modifications (0%), and for trend increases (+50% and +100%). The sensitivity 
analysis was carried out in the StellaTM software. 

Table 5 shows the values that were obtained after performing the sensitivity analysis. 
As observed for a decrease in trend (−100% and −50%), the values obtained when simulat-
ing the critical variables are lower; this can be detrimental to water resource efficiency and 
available agricultural land and can make the system more vulnerable. Likewise, a reduc-
tion in GHG emissions and the presence of risky events help reduce vulnerability. Con-
trarily, an increase in the trend (50% and 100%) has a positive effect on the development 
of agricultural activities due to the use of water resources and land use. However, this has 
a negative impact on the environment. A sensitivity analysis, therefore, makes it possible 
to observe the behavior and dynamics of the system, which gives validity and robustness. 

Table 5. Values of interest variables for each simulated scenario. 

Variable 
Value 

−100% 
Trend 

−50% 
Trend 

Trend 
(0%) 50% Trend 100% Trend 

Agricultural water resources effi-
ciency 1.34 1.51 1.69 1.88 2.06 

Agricultural land available 4,896,459 5,496,168 6,095,876 6,695,585 7,295,293 
GHG emissions 70,397 121,396 172,396 223,395 274,394 

Emergency or risk situation 4808 6371 7935 9498 11,061 

Figure 5A shows the effects of the variable National Available Water (Hm3) on the 
behavior of the Agricultural water resources efficiency network (kg/m3) over a validation 
period of twelve cycles. Scenarios 1 and 2 show a decrease in the trend, scenario 3 the 
current trend, and scenarios 4 and 5 show an increase in the trend. 

 
Figure 5. Sensitivity analysis of critical variables. 

When validating the networks for agricultural yields and agricultural values, the 
trend of the Total ground variable was changed, as an increase or decrease in this variable 
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has a direct effect on the variable “available agricultural land” (Figure 5B). The sensitivity 
analysis shows a decrease in scenarios 1 and 2 given the decrease in the trend, while an 
increase in the trend increases the value achieved in scenarios 4 and 5. For the estimation 
of the available agricultural land, the resulting non-cultivable area is excluded. The envi-
ronmental contingency network comprises two critical variables: greenhouse gas emis-
sions and emergency or risk situations. Emissions from the agricultural sector contribute 
around 12% to total greenhouse gas emissions at the national level (INECC). The Inter-
governmental Panel on Climate Change (IPCC) classifies the national inventory of emis-
sions by chemical compounds for the main environmental items, divided into categories 
and sectors [66]. 

The emissions are divided into six greenhouse gases contained in the Kyoto Protocol: 
carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbon, and sulfur 
hexafluoride [67]. For the variable emergency or risk situation, the number of events 
within this classification that were reported by the National Center for Disaster Manage-
ment (CENAPRED) was counted. Figure 5C,D show the results obtained in the sensitivity 
analysis for twelve culture cycles. 

The efficiency of water resources depends on the volume of water available. The ag-
ricultural sector accounts for around 76% of the national water volume. The efficiency of 
water resources in Mexico averages 1.45 kg/m3 for the years 1994–2016, with 2012 being 
the year with the highest yield of 1.86 kg/m3 [40]. Figure 6A shows the behavior of the 
efficiency of the water resources concerning the water volume.  

 
Figure 6. Projection of variables. 

As can be seen, as the availability of water for the development of agricultural activ-
ities increases, the efficiency of water resources increases in the same way. Following the 
historical trend, an increase in the trend in water availability can be observed through 
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simulation cycles; However, the efficiency of water resources remains semi-constant (cy-
cles 10–12), which is because a decrease in crop yield has been observed. 

The projected results for twelve growth cycles following the current trend of the sys-
tem are shown below (Figure 6B). As can be seen, an increase in the yield per hectare 
cultivated increases the value of agriculture. The most promising scenario is in cycle 4 
with 3806.64 kg/ha and $ 740,404.64 million. The GDP value achieved in the fourth quarter 
of 2018 was used to project the agricultural value variables [68]. 

It can be seen, that in Scenarios 1 and 2, when the trend decreases, GHG decreases, 
and there are fewer incidents that put agricultural harvests at risk. Conversely, if the trend 
increases, environmental contingency will increase. The sensitivity analysis based on the 
causal diagram (Figure 2) shows the expected behavior in the sub-model, why it can be 
concluded that the network vulnerability indicator agent is robust and valid. Figure 6C 
shows the results of simulating twelve crops of the critical variables of the environmental 
contingency network. The expected value is affected by the projection of historical data 
trends from 2001 to 2018. With the results obtained, an exponential increase is observed 
in both time series. The increase in the GHG emissions variable at the end of the simula-
tion shows an increase of 21.5%. The increase in total emissions from the agricultural sec-
tor is determined by the source emissions from methane, nitrous oxide, and carbon diox-
ide [42]. The trend of risk or emergency events is between 9% and 11% between the indi-
vidual cycles. However, this number is expected to continue to increase due to changes in 
climatological factors, which could have a significant impact on crop safety for some re-
gions in Mexico. 

Table 6 shows the results of the variables of interest during the twelve-cycle simula-
tion. The data for the agricultural value variable is expressed in millions of dollars using 
the exchange rate as a reference and the percentage of GDP relative to the fourth quarter 
of 2018. 

Table 6. Values of interest variables for each simulated cycle. 

Cycle 

Variables 

Water Volume 
Available 

Water Re-
sources Ef-

ficiency 
Land Available Land Yield Agricultural Value GHG 

Emissions 
Emergency or 
Risk Situation 

Hm3 Hg/m3 Ha Kg/Ha Mill US$ %GDP Gt CO2 eq Events 
1 251,773.89 1.45 7,227,184.35 3676.06 18,743.80 2.060 159,964.05 6774.44 
2 273,972.29 1.64 7,206,865.98 3757.75 30,735.37 3.379 166,960.44 7570.99 
3 309,046.29 1.71 7,190,620.79 3722.91 26,778.92 2.944 173,457.32 7660.92 
4 304,838.15 1.75 7,182,446.01 3806.64 36,383.52 4.000 177,753.08 7493.91 
5 321,256.42 1.79 7,195,389.17 3691.39 31,181.25 3.428 176,422.15 7866.49 
6 319,024.29 1.82 7,275,353.99 3653.58 29,259.90 3.216 180,710.70 8598.80 
7 324,990.54 1.85 7,362,793.28 3770.19 31,747.40 3.490 179,379.77 8547.41 
8 315,145.00 1.88 7,425,284.69 3770.10 32,340.86 3.555 183,372.56 9395.35 
9 324,001.19 1.92 7,333,854.86 3734.56 24,244.44 2.665 184,259.85 9408.19 

10 356,892.50 1.97 7,295,293.55 3714.15 27,219.68 2.992 189,287.81 9151.24 
11 345,194.27 2.02 7,157,878.98 3802.90 25,964.10 2.854 190,470.86 9767.92 
12 371,708.19 2.06 7,103,162.95 3747.27 24,884.65 2.735 194,315.76 9857.86 

Stage 2: Results obtained from the fuzzy models 
The input parameters for each variable represent the data reported by the industrial 

sugar mill to the case study. Once the parameters have been introduced into the fuzzy 
model, the diffusion process converts the fuzzy parameters of the input variables through 
the values of the degree of membership of the fuzzy sets into a numerical value for the 
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output variable and for activating inference rules Appendix B describes the input param-
eters for each fuzzy model. 

The value for the sugarcane yield in the fuzzy model is 65.1 tons/ha, a value that is 
considered to be moderate to high in terms of vulnerability. This value may indicate that 
the soil is deficient in N-P-K nutrients or that pests and diseases are affecting the crops. 
Figure 7 shows a comparison of the historical data reported by the Information Service for 
Agriculture and Fisheries (SIAP) for the last 12 cycles with the results of the fuzzy model. 

 
Figure 7. Sugar cane yield: data history–VS-fuzzy logic model data. 

The results obtained in Figure 7 show a correlation between the data obtained by the 
fuzzy model and the historical data given for the sugarcane yield. The correlation coeffi-
cient obtained is 94.65%. The results presented below (Figure 8) show the response sur-
faces that were obtained with a higher cultivation yield. The highest expected yield varies 
between 76 and 81 tons/ha in terms of the variables N-P-K (nitrogen, phosphorus, and 
potassium) related to soil nutrition. Using fertilizers is crucial for the productivity of the 
plantations. Using fertilizers provides the nutrients that are deficient in agricultural soils 
due to soil degradation or the effects of climate change. Using fertilizers prevents the loss 
of nutrients through leaching and counteracts the effects of saline solution that inhibit root 
growth. 

 
Figure 8. Impact of input variables in crop yield model. 

The addition of nitrogen (N) is important in the formation of plant material (sprouts) 
and can stimulate the intensive growth phase (Figure 8A). Lack of nitrogen can cause 
premature leaf death and leaf blade discoloration. The highest expected value of the crop 



Mathematics 2021, 9, 3061 21 of 34 
 

 

yield is related to the addition of phosphorus (P) (Figure 8B), as this is required in larger 
proportions during the development phase of the crop but if the recommended values are 
exceeded (>Extreme weather events are recorded in Central America, which severely af-
fect agriculture and rural 15 kg P2O5 ha−1). It reduces the yield, the sugar concentration, 
the sucrose content in the juice, and the purity of the culture [4]. Potassium (K) increases 
the yield of the stems and the sugar concentration in the cane, a potassium deficiency 
reduces the accumulation of sugar in the stems, degrading the quality of the crop (Figure 
8C). As observed in the response surfaces, there is no interaction with the variable “irri-
gation system” since sugarcane is produced under rainy conditions. The most suitable 
medium for plant growth is when the rainfall regime is around 1500 mm, considering that 
the plant uses 50–100 m3 of water to produce one ton of sugarcane (fresh weight). Based 
on the 2017 National Agricultural Survey (ENA) report, it was found that 80% of agricul-
tural sugarcane producers had no problems with water for cultivation, so there was no 
need to introduce an irrigation system. 

The result after the diffusion process is a harvest risk of 0.21, which is classified as 
low risk and is categorized under the “harmless” linguistic label. Figure 9A shows the 
interaction of the variables that may increase the harvest risk, with a value of up to 0.85 
being considered high risk. Temperature is one factor that is highly related to the growth 
of the plantation. It has optimal values between 25 and 38 °C. Values outside this range 
have a negative effect on the regrowth or germination of sugarcane. Values above 38 °C 
reduce the photosynthesis process of the culture and alternate the sucrose concentration. 
Besides the temperature, wind speed is a decisive factor that increases the risk of harvest-
ing. In agricultural areas with strong winds, water loss is high due to rapid evaporation 
from the soil surface. Winds at speeds over 60 km/h destroy the vegetation by losing 
leaves due to the mechanical effect they have on the sugarcane. 

 
Figure 9. Impact of input variables in uncertain parameters model. 

The water requirement during sugarcane growth is higher compared to most crops, 
between 50 and 70% of the roots are distributed in the first 30 cm depth. This is the area 
where nutrients and water are more absorbed. During periods of drought, when condi-
tions of low humidity prevail, the roots of the crop tend to grow deeper and look for water 
resources. This will cause the water to be mainly concentrated in the roots, and less con-
centrated in other parts of the plant, thereby reducing the production capacity of the crops. 
Figure 9B shows the relationship between drought and rain variables, where the observed 
risk level is higher than 0.45, which is considered a “moderate to high” risk. 

Hydrometeorological phenomena are usually accompanied by gusts of wind above 
120 km/h and torrential rainfall, which increases the risk of harvest due to the mechanical 
action exerted on the crop. Figure 9C shows the relationship of the variables rain and me-
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teorological events, in which an incidence of over 160 events with an emergency declara-
tion and precipitation over 100 mm is observed, whereby the harvest risk is increased to 
a “moderately high” level. 

The proportion of events in the study region concerning those reported at the na-
tional level is approximately 23.74%; however, in 2004, 2010, and 2013 there was an in-
crease due to hydrometeorological events with a declaration of “disaster”, according to 
reports from the National Center for Civil Protection (CENAPRED). 

These events are related to extremely atypical rainfall (2004), heavy rainfall from 
Hurricane Karl and Cyclone Mathew (2010), and tropical storms: Barry, Fernando, Ma-
nuel, and Hurricane Ingrid (2013). 

Figure 10 shows a history of the hydrometeorological events reported in Mexico in 
the period 2001–2016 [36]. The percentage of events recorded in the Tabasco-Veracruz 
state region. 

 
Figure 10. Number of hydrometeorological events reported in México in the period 2001–2016. 

With the results of the fuzzy models (crop yield and harvest risk) and the data on 
agricultural sugarcane production (cultivated area, harvested area, and production 
value), the degree of vulnerability of the crop was determined through the diffuse crop 
vulnerability model. The vulnerability of the crop obtained is 0.265 (“low-medium” level). 
Mexico has 55 sugar mills, of which Veracruz has 20. This makes Mexico the state with 
the highest sugar production nationwide (2,620,194 tons). The observed yield from sugar 
production is related to changes in climatic conditions caused by global warnings, such 
as changes in rainfall and extreme weather events, which adversely affect agricultural 
production and increase the risk of harvesting. 

Figure 11A shows the relationship between the variables crop yield and harvest risk. 
An increase in vulnerability is observed in the results obtained in the response area, in-
creasing the risk of harvesting and reducing the yield per hectare. 
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Figure 11. Impact of input variables in crop vulnerability model. 

With the increasing impact of climate change, there is a need to develop strategies to 
increase productivity and maximize the potential of the agro-food sector. The relationship 
between the yield of sugarcane production (harvested area) is not proportional; Although 
the planted area is large, it does not ensure that the expected crop yield will be the same 
(Figure 11B), but mainly depends on various factors related to good management of agri-
cultural practices and climatic factors. One of the major challenges facing the sugar sector 
is the global supply of sugar due to increasing competition in the sweetener manufactur-
ing market. Therefore, the sugarcane agribusiness strives to increase profitability and sus-
tainability to ensure a quality offer with competitiveness in the market and to maintain a 
stable production value. Figure 11C shows the relationship between production value and 
crop yield. 

The agricultural supply chain is affected by climate change, and the socio-economic 
changes in agricultural production demand due to fluctuations in food and net import 
demand have reduced agricultural production efficiency [69,70]. On the other hand, in the 
medium term, the uncertainty of Mexico’s geographic location and the scale and fre-
quency of extreme events may greatly increase the vulnerability of the agricultural sector 
[45]. Faced with the increased vulnerability of sugarcane production, proper management 
of the physicochemical indicators of the edaphic environment can increase the yield of 
sugarcane per hectare. The non-nutrition disorders model has the function of a reactive 
agent because it can model the physicochemical indicators of the edaphic condition of the 
sugar mill supply area to predict the efficiency of agricultural soil. So it helps to resist the 
vulnerability of crops. Through the fuzzy model, agricultural soil efficiency of 0.783 (“av-
erage optimal”) was obtained. 

The main soils of the agricultural land are Vertisole, Gleysole, Cambiosole, and Lith-
osole. The former is characteristic soils that are very hard and tend to create deep cracks 
during periods of drought. Gleysols are soils that tend to accumulate water during peri-
ods of higher rainfall. Cambisols and lithosols are soils that are very prone to erosion. 

The results obtained in the response surfaces show a higher efficiency (≈>0.77), which 
results from the interaction of the variables organic matter and pH (Figure 12A). 
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Figure 12. Impact of input variables in reactive agent model. 

Organic matter makes it possible to reduce problems related to nutrient deficiencies 
in agricultural soils because organic matter provides the necessary micronutrients (Mg2+, 
Cu2+, Fe2+, Mn2+, and Zn2+) to minimize the deficit. The pH value determines the availability 
of micronutrients contained in organic matter. Optimal pH values in agricultural soil are 
between 4.8 and 7.2; pH values below 4 acidify agricultural soils due to the presence of 
exchangeable aluminum, altering the development of the crop root and reducing the 
productivity of sugarcane. As can be seen in Figure 12B, pH values above 4.5 increase the 
efficiency of soils by values above 0.68. PH values between 2.8 and 4 result in a soil effi-
ciency below 0.53. Electrical conductivity is a potential indicator for estimating soil and 
nutrient properties [71]. Figure 12C shows the relationship between electrical conductivity 
and organic matter. The response surfaces show high soil efficiency (>0.8) which is higher 
than the results obtained in the relationship between organic matter and pH. 

For a model to be classified according to the agent approach (ABM), it must be reac-
tive. The reactivity of an intelligent agent refers to the fact that it can analyze the state 
within the system in which it is immersed to react appropriately to changes caused by the 
environment [7]. The function of the fuzzy reactive agent model is one of “learning”. This 
is activated to reduce the vulnerability of the crop when vulnerability values above 0.54 
are obtained. If the vulnerability values are greater than 0.54, the reactive agent is acti-
vated to reduce the vulnerability (cycles 3, 8, and 10). If the vulnerability values are below 
0.54, the reactive agent is inactive. Figure 13 shows the results at the end of the twelve-
cycle simulation. As observed, when the cycles exceed the optimal vulnerability levels, 
the reactive agent activates and decreases by 8% (± 3%). 

 
Figure 13. Crop vulnerability vs crop vulnerability (reactive agent). 
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Table 7 shows the soil efficiency obtained from the diffuse reactive agent model and 
the results in the vulnerability scenarios over twelve sugarcane cultivation cycles. Sce-
nario 1 shows the results of crop vulnerability from the fuzzy models. In scenario 2 it is 
observed that the interaction of the reactive agent reduces the vulnerability when it ex-
ceeds values of 0.54. The final vulnerability value for the model is 0.37, which indicates a 
low level of vulnerability. 

Table 7. Crop vulnerability results. 

Cycle Scenario 1 Scenario 2 Reactive Agent 
1 0.45 0.45 0.73 
2 0.22 0.22 0.79 
3 0.57 0.49 0.6 
4 0.32 0.32 0.78 
5 0.3 0.3 0.74 
6 0.32 0.32 0.62 
7 0.28 0.28 0.66 
8 0.54 0.5 0.81 
9 0.49 0.49 0.69 

10 0.59 0.53 0.67 
11 0.4 0.4 0.78 
12 0.31 0.31 0.59 

Final value: Crop vulnerability agent 0.37  

In the multi-agent system, the crop vulnerability agent handles the decision-making 
process about the reactive agent and the flow of information provided by the agent net-
works as vulnerability indicators. The vulnerability indicators of the agent network form 
a decision support system for long-term land development strategies and prospects. 
Step 3: Determination of total vulnerability of the system 

With the results obtained in step 1, a vulnerability factor was assigned to each value 
obtained (Table 8). The vulnerability weighting for the Agricultural Land Yield and Agri-
cultural Value Networks was determined based on the 2017 Grain Yield and Global Ag-
ricultural Value Added by the United Nations Food and Agriculture Organization [72] 
and the World Bank [39]. 

The allocation of the vulnerability value for the networks for resource efficiency and 
environmental contingency (GHG emissions—emergency or risk situation) was carried 
out based on historical data observed from 2001 to 2018 [43,45,47,48,50,73]. The vulnera-
bility scale for each expected value of the variable of interest is shown below. 

Table 8. Vulnerability scale. 

Vulnerability Land Yield Agriculture 
Value 

Water Re-
sources Effi-

ciency 

GHG Emis-
sions 

Emergency 
or Risk Si-

tuation 

Scale Label Value 
(Kg/Ha) 

Value (% 
GDP) 

Value 
(kg/m3) 

Value (Gt CO2 
eq) 

Value 
(Events) 

0–0.37 Low >4464 >5.2 >2.2 <60,000 <4100 
0.38–0.68 Medium 3262–4464 3.4–5.2 1–2.2 60,000–190,000 4100–15,950 

0.69–1 High <3262 <3.4 <1 >190,000 >15,950 
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Based on the vulnerability scale, Table 9 shows the results at the end of the twelve-
cycle simulation; with a final vulnerability value of 0.56 being obtained. Average vulner-
ability is related to environmental contingency and resource depletion in the agricultural 
sector which affects crop yield and the value of agriculture. 

Table 9. Vulnerability results (Vulnerability Indicators Agent). 

Land Yield 
Agriculture Va-

lue 
Water Resources 

Efficiency 
Environmental Contingency 

GHG Emissions Emergency or Risk Situation Final Value 
0.58 0.89 0.59 0.58 0.43 0.49 
0.56 0.69 0.51 0.58 0.45 0.51 
0.56 0.73 0.47 0.66 0.47 0.55 
0.53 0.38 0.46 0.67 0.47 0.55 
0.58 0.64 0.45 0.66 0.47 0.55 
0.59 0.71 0.44 0.68 0.49 0.57 
0.55 0.64 0.42 0.67 0.48 0.56 
0.55 0.61 0.42 0.68 0.5 0.58 
0.57 0.78 0.42 0.68 0.5 0.58 
0.56 0.73 0.4 0.68 0.5 0.58 
0.53 0.75 0.39 0.69 0.51 0.59 
0.57 0.79 0.39 0.70 0.51 0.59 

Vulnerability Indicators Agent: 0.56    

5. Discussion 
The results obtained in stages 1 (Table 9) and 2 (Table 7) were used to determine the 

overall vulnerability of the system, with an average level (0.47) being obtained. The results 
obtained in Stage 2 showed vulnerability values that were below those obtained in Stage 
1; because implementing techniques including response surfaces reduces the number of 
simulations used to estimate parameters and results [74]. In the multi-agent system, the 
communication between the agents offers the possibility of interacting with one another 
as shown in the vulnerability values in stages 1 and 2; As the vulnerability is lower in 
stage 2, this is an indication that the crop has a low harvest risk due to weather conditions 
and the good management of the agricultural practices used, which helps to minimize the 
impact of the external factors mentioned in stage 1. 

Autonomy allows the agent to act without the direct intervention of another agent. 
In this case, the vulnerability indicator agent’s performance and the crop yield agent’s 
performance are not interdependent because they are independent, and each agent has its 
role. However, they work together for the same general objective (stage 3) and respond 
appropriately to changes in the system (reactive agent). 

Multi-agent systems can characterize complex study systems [73], which are mainly 
complex systems that intervene with various actors or agents. Different from other tech-
niques, implementing a multi-agent system for assessing vulnerabilities under the ABM 
approach provides the following advantages: 

i. Dynamism, by examining complex systems, problems at the micro-level are tackled, 
as there is a connection between cause and effect in the causal diagram (Figure 2) and 
macro-level, where the relationships between the elementary subsystems are exam-
ined. 

ii. Flexibility, in this case, the interaction of a reactive agent gives the multi-agent system 
flexibility to make changes within the system to achieve the goal. In stage 2, the vul-
nerability can be reduced by performing the reactive agent (non-nutritional disorders 
model) (Figure 13). 
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iii. Adaptability. The multi-agent system developed as a generic model serves as the ba-
sis for assessing the vulnerability of crops with characteristics similar to sugarcane 
by varying the dynamic variables of the model concerning the characteristics of the 
crops and the cultivation area as well as changes in mainly the inference engine of 
fuzzy models. 
For the aforementioned in the discussion section, we can conclude that the contribu-

tion to the state of the art and to knowledge is a model based on decision support agents, 
contributing mainly in the following aspects: 

Model integrated by agro climatic indicators of vulnerability capable of representing 
structural causes of the system under conditions of uncertainty and dynamism. 

The study system is modeled through time series; system dynamics; uncertain pa-
rameters; data mining and expertise; facilitating the study; understanding and analysis of 
the object of study allowing to evaluate different scenarios resulting from variations in the 
trend in aspects such as agricultural production; and incidence of meteorological phenom-
ena or reduction of resources. 

The development and implementation of the agent-based model (ABM) allows the 
capitalization of knowledge and information through the autonomy and social ability of 
the agents modeled through artificial intelligence techniques. 

The development of the reactive agent showed a decrease in the levels of vulnerabil-
ity as shown in Table 7; Therefore, the ABM not only seeks the characterization of the 
system to determine the vulnerability existing in the sugarcane crop, rather, it allows de-
cisions to be made with the objective of minimizing levels of vulnerability in order to in-
crease crop yield and production value. 

The validation of the agent-based model, consists of three steps: (i) the dynamic mod-
els were verified by calculating the vulnerability indexes for each information network 
(Figure 2), the results obtained were compared with the vulnerability scale established by 
the Mexican Institute of Water Technology (IMTA) [48]. (ii) For the validation of the fuzzy 
logic models, the results obtained in twelve simulation cycles were compared against his-
torical data reported by the case study mill (Figure 7), obtaining a correlation coefficient 
of 0. 9465; finally, (iii) for the validation of the agent model, a qualitative verification of 
the results obtained from the proposed methodology was carried out through the adap-
tation schemes for the sugarmill (case study), which were endorsed by the company’s 
agronomists, who considered them consistent with the system’s behavior pattern. The im-
plementation of the work schemes will be carried out in the next planting cycle for the 
year 2022. 

6. Conclusions 
Agricultural systems are anthropogenic ecosystems in continuous evolution that re-

spond not only to climatic but also to socio-economic and institutional changes related to 
the production process. The loss of biodiversity of crops and fauna and the impact of cli-
mate change accelerates the spread of viruses and infectious diseases transmitted from 
animals to humans, such as COVID-19. Among the factors that increase this condition are 
deforestation, changes in land use, and excessive agriculture, which affect the agricultural 
supply chain related to the supply and demand of agricultural products [75,76] 

The modeling of uncertain parameters enables estimates of behavioral patterns and 
possible impacts within the system. In this sense, the vulnerability must be analyzed as a 
systemic and dynamic condition. 

Agent-based models (ABM) can analyze and simulate newly occurring properties of 
the system through the interaction and information flow of virtual agents. The developed 
ABM comprises agent networks designed with the help of artificial intelligence techniques 
that allow the study of the behavior and interactions of the agents who integrate the net-
works. 
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The vulnerability indicator agent showed a greater impact on environmental contin-
gency due to the increase in GHG emissions and the exponential growth of meteorological 
phenomena that endanger the agricultural harvest. Likewise, factors such as crop loss, 
depletion of resources, and loss of soil fertility jeopardize the proper development of ag-
ricultural activities, affecting the value of agriculture and consequently making the agri-
cultural sector more vulnerable. The crop vulnerability agent demonstrated the optimal 
production conditions in terms of agricultural practices and soil nutrition to achieve a 
higher yield from the sugarcane crop. The highest expected yield varies between 76 and 
81 tons/ha in terms of the variables N-P-K (nitrogen, phosphorus, and potassium) related 
to soil nutrition. Using fertilizers is critical to the productivity of the plantations; Since it 
contributes to the nutrient deficiencies in agricultural soil that arise from soil degradation 
or the effects of climate change, counteracting saline effects that inhibit the growth of sug-
arcane roots. 

The reactive agent enables the modeling of physicochemical indicators of the edaphic 
condition in the supply area of the sugar mill to predict the efficiency of the agricultural 
soil. In this way, the vulnerability of the harvest is counteracted, and the sugarcane har-
vest vulnerability is reduced by 8%. Applying the agent-based model, a vulnerability of 
0.47 was obtained, which was considered to be moderate. 

This research contributes to the state-of-the-art knowledge of a decision support sys-
tem through an agent-based model to assess the vulnerability of agriculture to sugarcane 
growing by developing scenarios dynamically and simultaneously to propose work pro-
grams leading to the mitigation climatic change of and carry out adaptation measures. 

This research provides i) an agent-based methodology integrated by different tech-
niques for modeling and developing environmental and socioeconomic indicators to gen-
erate adaptation schemes for the agricultural system under study facing climate change; 
and, ii) models for knowledge and experience management through fuzzy logic and mod-
els that allow representing the uncertainty of the system under study by means of system 
dynamics simulation to obtain socioeconomic indicators. With the methodology and mod-
els developed, an agent-based macro-model was obtained to address problems related to 
crop vulnerability to climate change. The macro-model obtained serves as a generic 
model, which can be adapted to crops with similar characteristics to sugarcane, manage-
ment of similar agricultural practices, and edaphic and climatological conditions similar 
to those in the study area. 
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Appendix A 
Tables A1–A4 describes the parameters used in the design of the model: input varia-

bles, constitution of fuzzy sets (linguistic labels and intervals), knowledge base (inference 
rules) and output variable for the fuzzy models. 

Table A1. Crop yiel model: fuzzy sets and operation intervals. 

Input 
Knowledge 

Base 

Output 

Variable 
Diffuse sets 

Variable 
Diffuse Sets 

Label 
Membership 

Function Interval Label 
Membership 

Function Interval 

Agriculture 
Type 

Open Agricul-
ture Triangular [1, 2] 

768  
Inference 

Rules 

Crop 
Yield 

None Triangular [0, 4.4] 
Potected Agri-

culture Triangular [2, 3] 

Irrigation 
Rainfall Triangular [0, 1] 
Irrigated Triangular [1, 2] 

Irrigation Sys-
tem 

None Triangular [0, 1] 

Lower Triangular [1.5, 16.3] 
Gravity Triangular [1, 2] 
Canal Triangular [2, 3] 

Sprinkler Triangular [3, 4] 
Trickle Triangular [4, 5] 

Low Trapezoidal [10, 46.1] 
Pipeline Triangular [5, 6.6] 

Nitrogen, (Kg 
ha−1) 

Low to Me-
dium 

Trapezoidal [0, 36.5] 

High Trapezoidal [25, 65] 

Phosphorus, 
(Kg P2O5 ha−1) 

Low to Me-
dium 

Trapezoidal [0, 14] 

Medium Trapezoidal [38, 76] 
Higher Trapezoidal [10, 25] 

Potassium 
(Kg K2O ha−1) 

Low Triangular [0, 58] 
Medium to 

Higher Trapezoidal [43, 200] 

Pesticide 
Yes Triangular [1, 2] 

High Trapezoidal [65.5, 125] 
None Triangular [0, 1] 

Insecticide 
Yes Triangular [1, 2] 

None Triangular [0 1] 

Table A2. Uncertain parameters model: fuzzy sets and operation intervals. 

Input 
Knowledge 

Base 

Output 

Variable 
Diffuse Sets 

Variable 
Diffuse sets 

Label Membership 
Function 

Interval Label Membership 
Function 

Interval 

Meteorological 
Events 

Warning Trapezoidal [0, 119] 

72 Inference 
Rules 

Harvest 
Risk 

Harmless Triangular [0, 0.43] 
Emergency Trapezoidal [95, 258] 

Drought 
Warning Trapezoidal [0, 117] 

Emergency Trapezoidal [76, 185] 

Wind (Km/hr) 
Weak Triangular [0, 50] 

Moderate Triangular [0.3, 0.72] 
Hard Triangular [40, 60] 

Strong Trapezoidal [50, 100] 
Low Level Trapezoidal [0, 50] 
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Rain 
(mm/month) High Level Triangular [10, 170] 

Risk Trapezoidal [0.64, 1] 
Temperature 

(°C) 

Minimum Trapezoidal [14, 23] 
Optimal Trapezoidal [18, 32] 

Maximum Trapezoidal [29, 43] 

Table A3. Crop vulnerability model: fuzzy sets and operation intervals. 

Input 
Knowledge 

base 

Output 

Variable 
Diffuse sets 

Variable 
Diffuse sets 

Label Membership 
Function Interval Label Membership 

Function Interval 

Planted Area 
(Ha) 

Low Season Trapezoidal [6, 7354] 

120 
Inference 

Rules 

Crop 
Vulnerabilit

y 

Low Triangular [0, 0.33] 
High Season Trapezoidal [4333, 25,000] 

Harvest Area 
(Ha) 

Low Harvest Trapezoidal [3, 8187] 
High 

Harvest Trapezoidal [4108, 23,800] 

Production 
Value 

(Thousands 
US$) 

Expected Trapezoidal 
[1.59 × 103, 1.71 

× 107] 

Medium Trapezoidal [0.2, 0.76] 
High Trapezoidal 

[1.14 × 107, 4.73 
× 107] 

Crop Yield 

None Triangular [0, 4.4] 
Lower Triangular [1.5, 16.3] 
Low Trapezoidal [10, 46.1] 

Medium Trapezoidal [38, 76] 

High Trapezoidal [0.65, 1] 
High Trapezoidal [65.5, 125] 

Harvest Risk 
Harmless Triangular [0, 0.43] 
Moderate Triangular [0.3, 0.72] 

Risk Trapezoidal [0.64, 1] 

Table A4. Non-nutritional disorders model: fuzzy sets and operation intervals. 

Input 
Knowledge 

Base 

Output 

Variable 
Diffuse Sets 

Variable 
Diffuse sets 

Label 
Membership 

Function Interval Label 
Membership 

Function Interval 

PMP  
(Wilting point) 

Underneath Triangular [0, 28] 

72 Inference 
Rules 

Soil 
Efficiency 

Optimal Trapezoidal [0.55, 1] 
Optimal Trapezoidal [22, 73] 

CE 
(Electric 

Conductivity) 
dS/m  

Min Trapezoidal [0, 0.19] 
Med  Trapezoidal [0.1, 0.9] 

Max Trapezoidal [0.73, 1.6] 

Median Triangular [0.19, 0.72] 
pH 

Min Triangular [0, 4.8] 
Med  Triangular [3.5, 6.5] 
Max  Triangular [5.4, 7.4] 

MO% 
(Organic Matter) 

Medium Trapezoidal [0, 5.7] 

Poor Triangular [0, 0.28] 

Maximum Trapezoidal [4.2, 10.8] 
Int.Acidity 

(Interchangeable 
Acidity) 

cMol*Kg−1 

Medium Triangular [0, 0.22] 

Maximum Triangular [0.1, 0.6] 
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Appendix B 
Tables A5–A8 describes the input parameters for each fuzzy model: Crop yield, Un-

certain parameters, Crop vulnerability and Non-nutritional disorders. 

Table A5. Fuzzy model input parameters: Crop yield. 

Variable Value Unit 
V1 Agriculture Type Open Agriculture Mode 

V2 Irrigation Rainfall Mode 
V3 Irrigation System None Mode 

V4 Plaguicide Yes Aplication 
V5 Insecticide Yes Aplication 
V6 Nitrogen 60 Kg ha−1 

V7 Phosphorus 12 Kg P2O5 ha−1 
V8 Potassium 120 Kg K2O ha−1 

Table A6. Fuzzy model input parameters: uncertain parameters. 

Variable Value Unit 
V9 Meteorological Events 35 Number of events * 

V10 Drought 48 Number of events * 
V11 Wind 38 Km/hr 
V12 Rain 166 mm/month 

V13 Temperature 27 °C 
* Number of events in the last cycle. 

Table A7. Fuzzy model input parameters: crop vulnerability. 

Variable Value Unit 
V14 Planted Area 2497 Ton 

V15 Harvested Area 2497 Ton 
V16 Production Value 139,607.67 Thousands of $ 

O1 Crop Yiel 65.1 Ton/Ha 
O2 Harvest Risk 0.21 Level 

Table A8. Fuzzy model input parameters: reactive agent. 

Variable Value Unit 
V17 Wilting point (PMP) 23 PMP Level 

V18 Electric Conductivity (CE) 1.6 dS/m 
V19 pH 6.3 pH Level 

V20 Organic Matter (MO) 10.3 % 
V21 Interchangeable Acidity (Int.Acidity) 0.4 cMol*Kg−1 
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