
����������
�������

Citation: Machorro-Cano, I.;

Olmedo-Aguirre, J.O.;

Alor-Hernández, G.;

Rodríguez-Mazahua, L.;

Sánchez-Cervantes, J.L.; López-Chau,

A. SCM-IoT: An Aproach for Internet

of Things Services Integration and

Coordination. Appl. Sci. 2022, 12,

3133. https://doi.org/10.3390/

app12063133

Academic Editors: Agostino

Forestiero and Stefan Fischer

Received: 20 December 2021

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

SCM-IoT: An Aproach for Internet of Things Services
Integration and Coordination
Isaac Machorro-Cano 1 , José Oscar Olmedo-Aguirre 2 , Giner Alor-Hernández 3,*,
Lisbeth Rodríguez-Mazahua 3 , José Luis Sánchez-Cervantes 4 and Asdrúbal López-Chau 5

1 Universidad del Papaloapan, Calle Circuito Central #200, Col. Parque Industrial,
Tuxtepec C.P. 68301, Oaxaca, Mexico; imachorro@unpa.edu.mx

2 Department of Electrical Engineering, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2 508,
Col. San Pedro Zacatenco, Delegación Gustavo A. Madero C.P 07360, Mexico City, Mexico;
oolmedo@cinvestav.mx

3 Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9 852, Col. Emiliano Zapata,
Orizaba C.P. 94320, Veracruz, Mexico; lrodriguezm@ito-depi.edu.mx

4 CONACYT-Tecnológico Nacional de México/I. T. Orizaba, Av. Oriente 9 852, Col. Emiliano Zapata,
Orizaba C.P. 94320, Veracruz, Mexico; jlsanchez@conacyt.mx

5 Universidad Autónoma del Estado de México, Centro Universitario UAEM Zumpango, Camino Viejo a
Jilotzingo Continuación Calle Rayón, Valle Hermoso, Zumpango C.P. 55600, Estado de México, Mexico;
alchau@uaemex.mx

* Correspondence: giner.ah@orizaba.tecnm.mx; Tel./Fax: +52-272-725-7056

Abstract: Today, new applications demand an internet of things (IoT) infrastructure with greater
intelligence in our daily use devices. Among the salient features that characterize intelligent IoT
systems are interoperability and dynamism. While service-oriented architectures (SOA) offer a well-
developed and standardized architecture and protocols for interoperability, answering whether SOA
offers enough dynamism to merge IoT with artificial intelligence (AI) is still in its beginnings. This
paper proposes an SOA model, called SCM-IoT (service composition model for IoT), for incorporating
AI into IoT systems, addressing their coordination by a mediator offering services for storage,
production, discovery, and notification of relevant data for client applications. The model allows
IoT systems to be incrementally developed from three perspectives: a conceptual model, platform-
independent computational model, and platform-dependent computational model. Finally, as a case
of study, a domotic IoT system application is developed in SCM-IoT to analyze the characteristics
and benefits of the proposed approach.

Keywords: colored Petri nets; intelligent systems; internet of things; services interoperability;
services composition

1. Introduction

Technological advances have allowed complex closed systems to be redesigned on
a more open basis of composing interoperable components. IoT exemplifies this trend
motivated by the progressive decomposition of components, seeking to minimize their
functionality while maximizing the system’s dynamism, flexibility, and maintainability
through service composition (SC) [1]. The concept of IoT originated after the rise of wireless
gadgets and devices, and as a result, multiple IoT technologies are employed nowadays.
Some of these technologies include radio frequency identification devices (RFIDs), wire-
less communication, cloud applications for wireless sensor networks (WSNs), near-field
communication (NFC), global positioning system (GPS), WiFi, and Bluetooth [2–4]. Indeed,
the IoT is a captivating trend when it comes to integrating mobile technology to things or
real-world devices, which now create new forms of communication, including machine
to machine (M2M), peer to machine (P2M), and peer to peer (P2P) communication. These

Appl. Sci. 2022, 12, 3133. https://doi.org/10.3390/app12063133 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063133
https://doi.org/10.3390/app12063133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3822-4478
https://orcid.org/0000-0002-1920-9221
https://orcid.org/0000-0002-9861-3993
https://orcid.org/0000-0001-5194-1263
https://orcid.org/0000-0001-5254-0939
https://doi.org/10.3390/app12063133
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063133?type=check_update&version=2

Appl. Sci. 2022, 12, 3133 2 of 35

new forms of communication have managed to close the gap between communication and
information [5].

Similarly, IoT has real-world characteristics, yet it also experiences processing and
storage limitations that imply new trends and challenges for improving privacy, reliability,
security, and performance [6]. In addition, the IoT is a clear representation of the growth of
the Internet, where different devices are interconnected with people. For instance, several
microcontrollers (e.g., health monitors, wearables, sensors, and actuators) are developed
each year to interconnect with other things or smart devices through a specific network.
In this sense, smart devices have remarkable detection, processing, and networking ca-
pabilities, and they are used in various IoT application domains, such as healthcare and
domotic [7,8].

Likewise, web protocols guarantee the communication of smart devices, which are
compatible with constraint application protocols (CoAPs) and with other smart devices.
In addition, there is interaction with various web services, and the services offered by
smart devices are consumed through ubiquitous applications [9]; however, performing
the SC of the smart devices is complicated. SC is considered a fundamental aspect of
service-oriented computing (SOC), where various services collaborate to achieve a common
goal [10]. Services orchestration and choreography are two relevant processes interaction
patterns for the SC [11]. The centralized process for coordinating interactions between the
services of a business process or activity is known as service orchestration. The participants
in a service orchestration process are not regularly known, similar to what happens in
different scenarios in the IoT [12].

Services choreography describes the collaboration among the participant process,
particularly in their order of participation. Participants in a service choreography process
collaborate knowing the specific form of participation [13]. Besides, BPEL and WS-CDL are
two compositional languages used to orchestrate and choreograph services. Additionally,
in the context of business processes and web services, the application of SC in real-life
cases is usually investigated more frequently. However, it is not possible to apply the
procedures applied on the web services in the context of the IoT due to the limitations
of the devices and scenarios particularities presented in the different IoT application
domains. For this reason, advanced mechanisms are required to facilitate the integration
and collaboration of heterogeneous smart devices, the workflows representation, and
the IoT based services coordination, where the services are used through the services
orchestration and choreography in different real-life scenarios to meet the diverse needs
of users, to take advantage of and exploit the advantages that the IoT offers. Therefore,
IoT provides new opportunities to create a more innovative world, which is evident when
the number of data and events from various smart objects are dynamically composed in a
simple way for new applications.

Applications in IoT arrival are because the protocols based on the Web facilitated the
support in real-time. Likewise, to meet the diverse requirements of users in the IoT, the
SC combines services of various intelligent devices, which allows the development of new
applications [14]. In addition, healthcare and domotic in the context of the IoT are two
relevant application areas in which there is an opportunity to improve services interoper-
ability and reduce some costs. In this sense, the services integration and coordination in
the healthcare and domotic are required to cover the different needs of patients who need
to continue their recovery or rehabilitation at home [15]. Healthcare and domotic share
various integration and coordination aspects in their processes such as information flow,
organizational processes, market development, integration of inter and intra-organizational
processes, and market approaches. For health and domotic services management, coordi-
nated integration of processes is necessary due to the relationship between patients and
providers of the smart wearables used to monitor their health, increase comfort, and save
energy at home [16,17].

Current SC challenges on intelligent systems are still largely unexplored for IoT
services interoperability. This work proposes an IoT services composition mechanism

Appl. Sci. 2022, 12, 3133 3 of 35

called SCM-IoT, which performs the IoT services integration and coordination. BPEL
is important because it addresses IoT services orchestration and choreography, though
the latter to a lesser extent. SCM-IoT offers three services in BPEL (selection, update,
and notification) to provide an infrastructure for systems exhibiting greater intelligent
behavior. Finally, to validate SCM-IoT, a case study is developed to automate domotic
appliances for a physically disabled and overweight patient who needs to continue his
recovery and rehabilitation at home. This work extends [18] that PISIoT presents, a platform
that contributes to the control of overweight or obesity, and [19] that HEMS-IoT presents,
a platform that provides recommendations for energy-saving and comfort for residents
at home.

SCM-IoT is proposed to develop IoT applications in a broker-oriented architecture pro-
viding storage, edition, and notification services upon the message-passing distributed ar-
chitecture of BPEL. Consequently, SCM-IoT makes it possible to extend and simplify the de-
velopment of applications often found in artificial intelligence. These applications involve
the collaboration of intelligent agents exchanging information through shared memory.
Among the various applications of SCM-IoT, the following have been already addressed:

• Home automation, for the assistance of people with disabilities through automated
control of home appliances;

• Healthcare, for reducing overweight and obesity;
• Systems integration, for monitoring the programmed activities needed in treatments

and therapies of patients with physical disabilities.

SCM-IoT also extends the BPEL markup language with new elements further trans-
lated into BPEL elements only. This approach allows for orchestrating the activities of
agents willing to be notified on any relevant application data. Besides, SCM-IoT closely
resembles a data-centric model, similar to the distributed database model. Data may
be located in physically distributed storage media, though interconnected by a network
infrastructure that ensures the retrieval and exchange of information between applications.

Among the original contributions brought by the SCM-IoT, we can outline the fol-
lowing: (1) The SCM-IoT model introduces a coordination mechanism where storage,
production, and notification of findings of data of interest by a mediator, called the ed-
itor, are performed on the original data provided by content producers. (2) SCM-IoT is
a table-oriented coordination language instead of other tuple-oriented models such as
Linda coordination model [20,21]. (3) Unlike the Linda model, the primitive operations of
SCM-IoT are not based on the availability of tuples but based on the satisfaction of logical
conditions. (4) In SCM-IoT, the small number of changes in the number of sensors and
actuators in many IoT applications, such as home automation and healthcare, lead to a fixed
table structure. However, the static nature of the table is not a conceptual limitation of the
model but a non-functional constraint that ensures greater efficiency during coordination.
A design based on a fixed-structure table may additionally give applications greater clarity
by allowing all logically related entries (i.e., those that follow the same editing rules) to be
grouped under the same table.

This paper is structured as follows: Section 2 discusses works on SC, services coordi-
nation, services orchestration, and services choreography in the IoT context. In addition,
the abstract models of distributed systems, colored Petri nets, and event-condition-action
(ECA) rules are introduced. Next, in Section 3, we describe the methodology used. In
Section 4, a case study is presented to describe the results obtained. In addition, in Section 5,
we discuss the lack of dynamism and limitations. Finally, in Section 6, some conclusions
and suggestions for future research are given.

2. Related Work

The interconnection in the IoT is due to the wide adoption and application develop-
ment in application domains. These devices collaborate and cooperate with other smart
devices to integrate and combine different functionalities to achieve a common goal [22].
In this section, we review state-of-the-art IoT initiatives for SC.

Appl. Sci. 2022, 12, 3133 4 of 35

2.1. IoT Services Composition and Coordination

In artificial potential fields (APFs), Rapti et al. [23] provided a decentralized SC
model for IoT environments. Pang et al. [24] described an enterprise technology co-design
methodology for an in-home healthcare station (IHHS). In addition, they used design
principles of an IHHS solution, including 3C platform reuse and efficient SC, among
other aspects. Swiatek [25] introduced the ComSS middleware to operate and manage IoT
compositional service flow. The performance of ComSS depends on several factors: the
number of available services, inputs, data, and flow formats used. In contrast, Dijkman
et al. [26] proposed a scheme for developing business models in IoT applications based
on literature, interviews, and a survey among IoT practitioners. Furthermore, Pisching
et al. [10] presented a study on SC 4.0 cloud-centric manufacturing, as, in this environment,
all objects, features, and resources representing their states, information, and mode of
operation are considered services. Services, such as description, location, publication, and
invocation in a network, respond to requests between consumers and service providers. On
the other hand, Shehu et al. [27] provided two evolutionary algorithms (VPSO and NGA)
for QoS in IoT, taking into account the network. For QoS, the algorithms search for the
composition of services with optimal response time, network latency, cost, and reputation.
Vidyasankar [28] proposed a correctness rule for QoS activities and a transaction model in
the context of IoT. The atomicity and isolation of information exchange are flexibly defined
with his proposal to cope with the diversity of applications. From the perspective of the
energy optimization mechanisms in IoT, Sun et al. [22] optimized simultaneous requests
in SC. Their proposal optimizes energy consumption and facilitates the services exchange
between simultaneous requests in the context of the IoT.

Furthermore, Gierej et al. [29] developed a business model devoted to companies
implementing industrial internet of things technologies. The proposed concept was devel-
oped to support traditional companies transitioning to the digital market. Moreover, Ju
et al. [30] provided a generic business model for IoT services based on a literature review
and interviews with eight IoT experts. Urbieta et al. [31] reported an adaptive service com-
position framework that supports dynamic reasoning based on wEASEL, and an abstracted
service model representing services and user tasks in terms of their signature, specification,
and conversation. Salle et al. [32] introduced a preliminary inspired biological modeling
approach to exploit the peculiarities of the immune system in a way that enables dynamic
and reliable software and service composition in IoT.

In contrast, Baker et al. [33] elaborated E2C2, a multi-cloud IoT SC algorithm that
enables the deployment of an energy-aware composition scheme through the integration
and retrieval of constrained services in the IoT. Yamaoka et al. [34] introduced Dracena,
a data processing platform that supports easy integration of real-time IoT services. The
performance of Dracena was assessed in handling many moving vehicles, where concur-
rently generated data was processed in real-time, while multiple services used the yielded
data. Krishna et al. [35] developed IoT composer, a tool to support the development of
IoT applications by providing a model of object behavior and composition. They also
developed an implementation to effectively link and instantiate all the objects involved
in the SC. In turn, Ridhawi et al. [36] presented a solution for decentralized SC based on
blockchain to provide multimedia services for user subscription. For this purpose, they
dynamically created user-defined services without requiring intermediary services.

Considering spatial and temporal aspects, Lakhdari et al. [37] proposed a new energy
SC model to use compositional patterns of devices in IoT. They developed a heuristic-
based composition approach with multiple local knapsacks to select an optimal set of
energy-based services that devices in the IoT can deliver. Arellanes and Lau [38] analyzed
the fundamentals of service composition mechanisms in the IoT to determine scalability
requirements. Likewise, they identified that data flows, orchestration, and choreography
do not fully satisfy such requirements, unlike the novel composition mechanism DX-
MAN. Likewise, Abusafia et al. [39] presented an incentive-based framework for energy
service request composition. In addition, they designed an incentive model that considers

Appl. Sci. 2022, 12, 3133 5 of 35

the context of providers and consumers to determine the rewards generated by wireless
energy sharing.

Concerning service coordination, in their work, Cano et al. [40] presented a case
study for the design of secure IoT applications to relate the semantics of event-condition-
action (ECA) rules based on automata used for verification of rule compilation at run-time.
Furthermore, Giang et al. [41] presented IoT applications in smart cities from a distributed
coordination model supervised by components. Cheng et al. [42] proposed a service
platform for the IoT based on SOA to design services oriented to events. Besides, an event
definition language (SEDL) was presented, based on automata, event detection algorithms,
and a situational event driven by the service coordination behavior model. Belkeziz and
Jarir [43] presented a study describing the behavior of the layers of flexible and multiple
architectures for efficient IoT services coordination. Instead, they used the orchestration or
choreography of services to achieve their coordination. However, this design decision posed
considerable complexity since the coordination of services represented several challenges
such as heterogeneity, accessibility, context awareness, and discovery.

Moreover, García–Magariño et al. [44] proposed an agent-based approach to support
large-scale IoT by providing complex integrated services. They avoided the common bot-
tlenecks of this approach and the excessive bandwidth use due to direct communications
in peer-to-peer (P2P) networks. Likewise, Belkeziz and Jarir [45] described a recent review
of existing service coordination approaches in the IoT where they identified a tendency
to use orchestration or choreography to meet this challenge. They presented a classifica-
tion and overview of the leading service coordination models in the IoT. They designed
an architecture in the context of the IoT that can achieve service coordination through
the concept of meta-workflows, combining both coordination approaches: orchestration
and choreography.

2.2. IoT Services Orchestration and Choreography

Regarding service orchestration, Cubo et al. [46] introduced the DEEP platform to
support integrating and orchestrating heterogeneous devices that deliver services, storage,
and access through the cloud. Alternatively, Qu et al. [47] reported a model for the
specification of dynamic services for entities in the IoT. In this model, the entity state
information was broadcast in real-time by the extended structure and released to requesters
as dynamic services. Furthermore, Yu et al. [48] provided a platform adapted for the
convergence of IoT and WoT, which was crucial for implementing smart grids by fusing
dynamic elements with no user intervention. Bergesio et al. [49] suggested an object-
oriented model capable of orchestrating services and using an autonomous system to help
users personalize smart spaces. Likewise, Wen et al. [50] described a fog orchestrator to
centralize a collection of resources, map applications to specific requests, deliver automated
workflow to physical resources, build workload execution with quality of service control
at runtime, and create time-efficient policies to handle objects. In addition, Macker and
Taylor [12] further suggested the network edge workflow tool (Newt) for two use cases.
Additionally, they provided a set of workflow requirements for MANET group applications
to support decentralized decision making, group-based communication, and multiple
transport media widely.

In addition, Ren et al. [51] introduced a service selection model that emphasizes
the global synergy effect based on collaboration requirements. Pahl et al. [52] reported
an architectural pattern with its underlying principles. The pattern combines IoT edge
orchestration with a provenance mechanism, which relies on the blockchain for trusted
orchestration management (TOM) in the cloud. A novel IoT service orchestration approach
was proposed by Malik et al. [53] on multiple sensor and actuator platforms using virtual
objects in an IoT application store. Likewise, Ren et al. [54] presented a new orchestration
scheme to solve the optimization problem when implementing the service function chains
concept in the IoT. In addition, they modified the traditional SFC definition language to
describe the composite definitions in the IoT. In addition, Rafique et al. [55] proposed an IoT

Appl. Sci. 2022, 12, 3133 6 of 35

application development framework called IADev to address the challenges arising from
the lack of tools and techniques for IoT systems using attribute-based design and model-
driven development (MDD). It was identified that IADev achieved higher participant
satisfaction in service orchestration and application development in the IoT compared
to conventional approaches. Likewise, Serhani et al. [56] proposed a comprehensive
architecture for end-to-end workflow management processes, in which they included
declarative specification and composition, as well as orchestration, adaptation, among
other aspects. In addition, through supervision and automated analysis of cloud resource
orchestration at run-time, they achieved orchestration of a workflow in the context of IoT.

In their work on service choreography, Rodriguez–Valenzuela et al. [57] described a
novel method to implement a merged acquisition of distributed data using a lightweight
SC model, guaranteeing the accuracy of collaborations with no cyclic behavior with the
data in a distributed and decentralized way. Dar et al. [58] analyzed the design and
implementation of ROA, a generic architecture model with tools for integrating end-to-end
systems and IoT-based business processes. On the other hand, Duhart et al. [59] introduced
the environment monitoring and management agent (EMMA) framework, based on a
suite of elements to design distributed architectures for distributed environments. Cherrier
et al. [60] showed a complete architecture for designing applications in the IoT and proposed
D-LIT, providing universal access to the internal processing of objects and computing power.
Blanc et al. [61] suggested process choreography, a paradigm based on SOA combined with
wireless sensor and actuator networks (WSANs) to virtualize WSANs and use them in
IoT. Besides, Chen and Englund [13] argued a choreography platform for internet-oriented
services, performing the choreography of heterogeneous services through an automatic
synthesis of choreography diagrams.

Montali and Plebani [62] approached IoT to foster business processes in various
application domains (logistics, manufacturing, and healthcare). Seeger et al. [63] provided
a design for managing dynamic choreographies in IoT to expand the evaluation and
implementation facets to maintain the functionality of building automation systems so that
new devices involved in the choreography either actively participate or become inactive
again. Singhal et al. [64] studied the selection mechanism in BPEL, implementing a dynamic
SC approach through orchestration and choreography in health applications. Their analysis
based on time, memory, and energy consumption identified that choreography is faster
than orchestration. In the context of the IoT, Arreaga et al. [65] presented a monitoring
control and management system to achieve the interoperability of multiple smart gateways
in a greenhouse. They also measured soil and environmental parameters to help in the
farm supervision and management of the greenhouse on the Chlorophyll_X Web platform.
Automatic decision-making was promoted in real-time on the water supply for crops
through a network of wireless sensors with several intelligent gateways. The following
section describes the expressiveness, design, formalization, and validation of SCM-IoT.

2.3. Abstract Models of Distributed Systems

From the perspective of formal modeling of IoT systems, at least three inherent
properties that characterize IoT systems can be recognized: concurrency, interaction, and
reconfigurability [66,67].

Concurrency is a fundamental property of any distributed system [68,69]. A concurrent
system is organized in computational subsystems or components that exhibit a relatively
independent behavior from each other while developing their activities. Components
possess a configuration determined by their internal state and their knowledge of the
context they operate. From an engineering perspective, concurrency promotes efficiency
in achieving several activities by reducing the time to complete all of them. However,
this improvement introduces the need to coordinate precedence relationships between
component activities by establishing those that must finish before starting others [70]. A
formal visual representation of the concurrency of a system can be seen by a directed graph
where component activities are represented by nodes and precedence relationships between

Appl. Sci. 2022, 12, 3133 7 of 35

activities by the directed arcs that link them [67,71]. The interaction between components
provides a flexible mechanism to coordinate these dependencies properly.

The interaction between the components of a distributed system lies in the elementary
ability to perceive changes in their environment and perform actions accordingly. The
environment establishes a computational context that may consist solely of components
or include a communication medium. Direct interactions [72,73] between components are
conducted through the exchange of messages, where the message sending component
reveals its intention to deliver information using a signal that is perceived only by the
receiving component, which then prepares to receive it. In representing a system as a
directed network between activities, the direct interaction between components can be
represented as a precedence relationship from the sending component to one or more
receiving components. Indirect interactions between components are conducted through
a communication medium that can be realized over a possibly shared, persistent, or
transactional storage space as in the Linda coordination model [20,21]. Through this
storage space, decoupled interactions between components are developed, i.e., where it is
not necessary to know the identity between the participating components but to know the
identity of the subspace where the information will be stored by the sender and eventually
retrieved by the receivers. In the activity dependency graph, indirect interaction can be
modeled by additional fictitious activities, although this approach makes this representation
complex. A more suitable type of representation is Petri nets [16,74,75], where there is
a clear distinction between two types of nodes, in activities (transitions) and partitioned
storage space (places), as well as their dependency relationships that indicate the flow of
information to or from the medium.

Reconfigurability refers to the ability of a highly dynamic distributed system to mod-
ify its configuration, including that of its components [67,76]. In modern internet-based
distributed systems, it is increasingly common to change the computational locality of an
agent, human or computational, represented by a component. Changing locality involves
following connection and disconnection protocols between components to preserve com-
munication dynamically [66]. In its representation as directed graphs, the reconfiguration
of a distributed system can be seen as a change in the graph by deletion of an incident arc
at one node followed by the creation of a new incident arc at another node but with the
same origin node [77]. In IoT, the ability to reconfigure a system is crucial in the presence
of frequent disconnections between components due to their unstable communication
medium, intermittent operation, or physical substitution. Besides, reconfigurability en-
ables extending the system’s functionality by providing new services by incorporating
new components.

2.4. Coloured Petri Nets (CPN)

A CPN is a directed bipartite graph with annotations on its elements [78]. In a CPN, the
nodes are of two distinct types, known as places and transitions, and visualized by ellipses
and rectangles. CPN tools [79], a widely used modeling environment, adopts this form of
visualization. At any moment, a place contains a possibly empty multiset of structured data
called tokens. The distribution of the tokens among the places is known as marking. Place
marking is visualized as a collection of tokens inside that place. The arcs between the nodes
must satisfy the structural constraint that they only can connect nodes of different types,
either from places to transitions or from transitions to places. The places and their respective
arcs incident to a transition are known as the input places and input arcs of the transition,
respectively. Likewise, the places and their respective arcs incident on them, starting from
a transition, are known as the output places and output arcs of the transition. Annotations
are written on the elements of a CPN using the functional programming language SML as
in CPN Tools, according to well-defined syntactic and semantic rules. Annotations on the
input arcs impose constraints on the selection of the resources, whereas the annotations on
the output arcs establish their transformation rules. The scope of the variables used in the
annotations is centered around each transition. An input arc annotation is an expression

Appl. Sci. 2022, 12, 3133 8 of 35

that uses variables to designate either a token or one of its components within the token
structure. In concurrent systems, places correspond to passive resource storage sites, while
transitions are actions intended to move resources from input places to output places,
possibly transforming them according to a rule of transformation.

In CPN, the basic operations of movement and transformation of resources, grounded
on variable substitution and annotation instantiation under a substitution, are centered
on transitions. Substitution is an assignment of values to the variables occurring in at
least one annotation of the input arcs for any transition. A consistent substitution produces
instances of the input arc annotations that can be identified as tokens in the marking of
the corresponding input places. A transition is enabled if a consistent substitution satisfies
the transition condition (guarding). An enabled transition is eventually fired as long as it
remains enabled. Firing an enabled transition changes the distribution in the marking of
the input and output places of the transition.

2.5. ECA Rules

An event–condition–action (ECA) rule is a computational model for event-driven
architectures [80]. An ECA rule is structured in three parts:

• The event part specifies an event expression that binds the values observed in the
change of the computational context to the variables occurring in the expression;

• The condition part specifies a logical expression that restricts the values passed from
the event part;

• The action part specifies the changes exerted on the computational context but only
for those values that satisfy the condition part.

The computational context comprises all the objects that respond to actions of the
action part by exhibiting changes in their structure or data content. ECA rules use varied
forms of shared data storage. Active databases [81] are extended database systems that
react to the CRUD (create, read, update, delete) operations performed on tables. Produc-
tion systems (PS) [82] are collaborative systems for agents that react to the rising data
patterns observed in working memory after modifying its content. Besides, the abstract
computational model of CPN extends the single working memory unit of PS to a set of
partitioned possible shared working memory units corresponding to the set of places in
CPN. Under this interpretation of CPN, ECA rules provide an operational reading for
them, where transitions are instances of rules, enabled transitions are selectable rules for
execution, firing transitions correspond to rule execution, and marking to event detection.
Depending on the level of abstraction of the ECA rule language used, CPNs can be un-
derstood as the operational interpretation of ECA rules, whereas ECA rules correspond to
their declarative counterpart.

The IoT system development methodology uses this declarative-operational interpre-
tation of ECA rules and CPNs. This approach paved the way in system development for
transiting from more abstract description models to more detailed ones.

3. Methodology

SCT-IoT proposes a reduced set of interaction patterns to facilitate the development
and interoperability of IoT systems. In order to provide the editing services of the SCM-IoT
model in the BPEL service composition model, the producer-editor-subscriber pattern of
interaction is designed, modeled, and implemented. The new constructs provided by the
SCM-IoT model correspond to the new XML mark-up elements added.

The representation of the extensions in CPN provides a theoretical framework to for-
mulate and verify that the system has desirable properties such as progress, boundedness,
and invariance. For the presentation of the proposed extensions, they are described with
different levels of abstraction, from the conceptual level of the problem domain to the
detailed level of its implementation as follows:

• Conceptual model;
• Platform independent computational model;

Appl. Sci. 2022, 12, 3133 9 of 35

• Platform dependent computational model.

The conceptual model defines the data model of the IoT system described by means of
tables, including entries for data produced by sensors, for data monitored and modified by
the editor, and for data to be notified to the actuators. In the platform-independent model,
an abstract computational model such as CPN is used to formally describe both the tables
designed in the conceptual model and the instances of the CPNs corresponding to the design
patterns of SCM-IoT operations. Finally, in the platform-dependent model, an orchestration
language such as BPEL is used to code the CPNs obtained from the platform-independent
model. These models are described in more detail in the following subsections.

3.1. Conceptual Model

The SCM-IoT model consists of a centralized, shared, stable storage medium for
uncoupled interaction among agents, where a privileged agent, called the (content) editor,
controls the storage access through storage services provided to the other agents. The
editor can analyze, modify, produce and store new data into the storage medium based
on predefined rules. The editor can consume, produce, and publish data by receiving
service requests and perceiving changes in the storage contents, making the storage change.
Publishing data generates and propagates notifications about the rising of expected data
from the storage. Clients of the editing services are differentiated between (content) producers
and (content) subscribers according to the services they request.

SCM-IoT proposes an architectural pattern for the design and implementation of IoT
systems with loosely coupled components in a data-oriented approach as opposed to the en-
tirely based message-oriented approach. Figure 1 shows the SCM-IoT deployment scenario.

Figure 1. SCM-IoT deployment scenario.

The storage medium is organized in tables with fixed structures. Tables are fixed
collections of data where no rows can be deleted, nor new rows can be added. Column
names are called topics. Rows are organized in fields of some type (string, enumeration,
boolean, integer, or real) that store pieces of information. A row always has a key field
that uniquely identifies it. In SCM-IoT, rows and tables are called pages and notebooks,
respectively, and the message containing a request service is a notification, or simply, note.

Appl. Sci. 2022, 12, 3133 10 of 35

Table 1 shows the structure and content of a notebook for the home automation
application presented in the case study. This table has seven pages (rows) and nine fields
(columns). Each page is identified by the unique value of the “id” field.

Table 1. Room state.

ID Name Presence Temperature Smoke Toxic Gas Heater Cooler Alarm

PAS HALL NO NOR NO NO NO NO NO
SAL LIVINGROOM NO BAJ NO NO NO NO NO

COM DININGROOM SI BAJ NO NO NO NO NO
COC KITCHEN SI NOR NO NO NO NO NO
REC BEDROOM NO NOR NO NO NO NO NO
EST DEN NO NOR NO NO NO NO NO
BAN BATHROOM NO NOR NO NO NO NO NO

The notebook content shown in Table 1 shows the last state of the house as it is
perceived by the sensors (presence, temperature, smoke, and toxic gas) installed in each
room of the house. In this description, the state of the actuators (heater, cooler, alarm) is
also included. The page representing the state of the dining room (with “COM” as “id”)
shows that this room is occupied, has low temperatures, and has no smoke and no toxic
gas detected, with all the actuators not activated.

In general, the information contained in the notebook has two properties:

• At all times, the book contains the latest known information until a new update service
is successfully consumed;

• Participants can serially access the notebook contents through the editor services,
eliminating many concurrent access problems to the shared memory, such as those
observed in distributed databases.

Besides the primary editing notebook, there are also secondary notebooks that the
editor uses to perform his services. The subscription notebook is used to register clients
who wish to receive notifications of relevant data arising in its content due to the editor
activity. The notification notebook is also used to register subscription data before sending
it to the subscriber.

The three basic storage services that the editor provides to their clients are:

• Update, for modifying the data contained in the storage with new incoming or calcu-
lated data;

• Subscribe, for resuming clients’ activity awaiting pages whose content satisfies the
so-called notification conditions;

• Collect, for retrieving all pages from a notebook that satisfy a collection condition;
• There is no limit in the number of notebooks for edition. Each notebook may differ in

its structure according to its intended purpose.
• The services characterize the role of the actors that request them to the editor;
• Content producers request update services to introduce new data into a field or modify

existing page data. Production notes contain all the necessary information to determine
the page and the field addressed for the update;

• Content subscribers request notification services on specific data contained in the
storage as soon as available. Subscription notes contain the unique identifier of the
corresponding subscriber and the notification condition upon the storage contents the
subscriber is interested in being notified of.

In IoT, particularly home automation, sensors and actuators are identified respectively
with producers and subscribers. Producers originate the data to update the book by
intermediation of the editor. Subscribers receive notifications from the editor about the
logical conditions that are satisfied with the notebook’s contents. Thus, an application in
IoT develops an observable behavior for the data flow, as a data flow that transits from
sensors to actuators. The editor act as a broker that uses the notebooks for data reception,

Appl. Sci. 2022, 12, 3133 11 of 35

transformation, and further notification. SCM-IoT simplifies the scheduling of activities
since the interactions between participants are generally very complex. In SCM-IoT, sensors
and actuators are grouped by the topic of environmental variable they are intended to
deal with. Among the topics often used in domotic applications are, for example, human
presence detection, temperature, humidity, or light intensity.

As shown in Figure 1, the architecture has a layered design, organized in production
layer, edition layer, and subscription layer:

• The production layer consists of relatively independent client producers responsible
for generating the primary content of the storage medium. The production layer emits
update note requests to the edition layer for this aim;

• The edition layer receives all the update request notes addressed by the production
layer. If relevant, the notes are accepted to be posted in a field of a notebook page. The
editor judges the relevance of an update request, deciding on its acceptance according
to a set of rules. A simple relevance rule is that the datum in the note must differ from
the one already contained in the corresponding page’s field, avoiding unnecessary
editor actions. The editor monitors each update, filling other fields on the same page
or other pages, following system application rules. The end of the editor’s activity
triggers the test of the notification conditions of all subscribers and to carry out the
notification to all the subscribers whose notification conditions hold;

• The subscriber layer consists of a collection of independent clients who are ultimately
responsible for undertaking the necessary actions to ensure compliance with the
system’s overall goals. The subscribers’ activities are triggered after their notification
or collection conditions have been met upon the current state of the storage contents.

The editor aims to preserve the consistency and integrity of the data stored in the note-
book, acting as a provider of services for querying, updating, and notifying the notebook
contents. The following elements characterize the evolution of the behavior of a system
using the SCM-IoT model:

• Clients carry out their activities independently of each other but indirectly interacting
through the editor’s storage services;

• The data flow direction differentiates the editing services in the notebook. The data
coming from a note are entered into the notebook via an update service, whereas data
coming from the notebook are copied out into a note via a notification service;

• Once the satisfied notification conditions have been identified, the content editor
selects one notification non-deterministically and sends it to the subscriber that
requested it;

• The activities performed by any participant should always terminate, leaving the
notebook in a consistent state;

• Verification of editor actions ensures the logical consistency of the notebook contents.
Termination and verification ensure that the contents are logically consistent upon
completing a sequence of interactions among the participants.

3.1.1. Update

The update storage service modifies a field in a page of a notebook based on a request
from the producer. Thus, the note with the request must provide the notebook’s name,
the page’s identifier, the topic of the field, and the new data to replace the previous one.
However, the editor accepts not all update requests but only those that fulfill the condition
given in the request. The update is applied on the indicated page when the condition is
missing. In any case, only updates with different data from the current one are accepted.
The events of receiving update requests trigger editing actions into the notebook contents.
Such modifications must always end eventually, leaving the notebook in a stable state.

3.1.2. Subscription for Notification (Notify)

A subscription for notification is a page-oriented service whose purpose is to notify
the subscribers that a page content has reached a state where the notification conditions are

Appl. Sci. 2022, 12, 3133 12 of 35

met. After an update, the editor checks if the notebook content satisfies some notification
conditions. Once all the changes to the storage medium are completed, the editor looks for
the table relating fields modified by topic with the corresponding subscriber. Under this
approach, the update operations are the activity triggers looking for applying pertinent
application rules.

3.1.3. Subscription for Collection (Collect)

A subscription for collection extends the subscription for notification service from one
to several content subscribers, all interested in recognizing the rise of data that meet a col-
lection condition. The collection is an indivisible operation across all pages of the notebook.
Once the pages of interest have been identified for collection, they cannot be used in other
notifications or collections until completing the service. This restriction guarantees the
consistency and integrity of the notebook concerning the invariance conditions established
on its content. Uninterrupted notification delivery to all the corresponding subscribers
avoids interleaved access to other clients. The indivisibility of the collection service can be
ensured by giving this service the highest priority of attention. If more than one collection
conditions hold, one is chosen non-deterministically for its application.

In the following subsections, we present and describe the formalization and validation
of the editor services.

3.2. Platform Independent Computational Model

The SCM-IoT model was formally described through CPNs, allowing for the possibility
of rigorous verification of some of its properties to be visualized, analyzed, validated, and
enabled. In the CPNs shown in Figure 2 of Section 3.2.1, the notebook is represented by
location H, accessible to three transitions U, N, and C that represent the update, subscription
for notification, and subscription for collection services, respectively, as described in the
conceptual model.

Figure 2. Update service behavior. In (a), transition U is enabled by request on place P. In (b), the
effect of changing the notebook contents of place H is shown.

The content of the notebook corresponds to the marking of place H, given by its
current marking with the multiset expression “1′ (PAS, NO, BAJ, NO, NO, NO, NO, NO) ++
1′ (SAL, YES, BAJ, NO, NO, NO, NO, NO) ++ . . . ”. This expression is taken from the case
study presented below. The expression consists of the sum of several tuples representing
tokens, each one multiplied by their corresponding multiplicities, i.e., the number of times
it appears repeated in the multi-set. Thus, the token “(PAS, NO, BAJ, NO, NO, NO, NO,
NO)” appears only once in the book. The expression “(u, p, T, h, g, c, v, A)”, annotated on
the input arc of transition U to place H, declaratively indicates how the values are assigned
to the variables that appear in this expression. For the token given before, the values are
assigned sequentially in the order in which they appear from left to right, so the list of
assignments is “u = PAS, p = NO, T = LOW, h = NO, g = NO, c = NO, v = NO, A = NO”. The

Appl. Sci. 2022, 12, 3133 13 of 35

variable names that appear to the left of each assignment can be used in logical conditions
such as “p = SI”. According to the SCM-IoT model, the tokens represent the notebook
pages, and the data separated by commas and grouped by parentheses represent the fields.
The number of elements in the multiset, including duplicates, is circled within the marked
place, as shown in Figure 2a.

The editor services associated with the three transitions U, N, and C, mentioned above,
are described in detail below.

3.2.1. Update

The update service modifies the notebook’s contents, but only on one page and one
field at a time. This service is represented by the structural pattern given by the CPN
marked in green as shown in Figure 2a,b. The request originates from the service request
place S with the token “UPDATE (COM, SI)” indicating to make the update in the page
identified by “COM” for the field “PRESENCE” with the value “YES”, meaning that
someone is in the dining room as shown in Figure 2a. This request is left in place “P” where
the presence update requests are attended.

The structural pattern of the CPN that represents this operation consists of two tran-
sitions U and NU, both having as input places the notebook H and the request container
P for receiving update notes. In Figure 2a, note “(COM, SI)” can be seen in P and the
corresponding page “(COM, NO, BAJ, NO, NO, NO, NO, NO)” to be modified in H. The
“u” field corresponds to the first field in the last expression, while the “p” field corresponds
to the second.

As described in the informal model, the update is carried out only when the note
contains a value that is not already registered in H. The above is expressed with the
restriction “[p <> p′]” noted on the transition U. The conditions of qualification annotated
on the transitions U and NU are mutually exclusive among themselves since they indicate
the criteria to carry out the update, depending on the values of “p”, taken from the note in
P, and of “p′”, taken from the sheet identified by “COM” in H, as shown in Figure 2b.

In the case of the update note “(COM, NO)”, the NU transition is enabled while
the U does not, so the actions noted for the NU transition do not cause any change in
H. This representation preserves the number of tokens in H and the correspondence and
uniqueness between tokens and rooms.

3.2.2. Notify

The subscription service for receiving notifications allows resuming the activities of
those subscribers waiting for the emergence of data of interest generated by the editor.
Subscription is a service that corresponds to the pattern given by the CPN in red, as shown
in Figure 3a,b. The subscription request “SUBSCRIBE(u)” is marked in place S, which
enables the SS transition that, when triggered, marks the NS place with the subscription note
that contains only the subscriber identifier “u”. The subscription ends with this marking in
the US place, allowing all subscribers listed here to receive notifications eventually.

The subscription for notifications service has the behavior pattern described by transi-
tion N. The notebook for edition is represented by place H, where relevant data is expected
to arise. The input arc with annotation “(u, p, T, h, g, c, v, A)”, retrieves all tokens from H
and binds the variables appearing in the annotation with values.

Appl. Sci. 2022, 12, 3133 14 of 35

Figure 3. Subscription for notification service behavior. In (a), transition N is enabled by the marking,
showing only one subscriber in place US. In (b), a notification for the subscriber has been deposited
in place NC.

As shown in Figure 3a, the enabling and triggering of transition N can be described by
the ECA rule:

1. ON detecting (u,p,T,h,g,c,v,A) at H AND detecting u at US;
2. IF p = ON andalso T = LOW andalso c = OFF;
3. DO remove (u,p,T,h,g,c,v,A) from H; insert (u,p,T,h,g,ON,v,A) to H.

Notifications are performed by firing transition N, where H is an input and an output
place for N, as shown in Figure 3b.

The same tuple expression “(u, p, T, h, g, c, v, A)” is annotated in the input and output
input arcs, indicating that no field is modified during notification. Though the values
assigned to the variables are used to evaluate the logical condition on N. The condition
“[p = SI, T = BAJ, and c = NO]” establishes the values that the variables “p”, “T”, and “c”
must take to verify it. In this way, transition N is enabled when there is a token such as
“(COC, YES, LOW, NO, NO, NO, NO, NO)” in H because it assigns the values “YES”,
“LOW”, and “NO” to the variables “p”, “T”, and “c”, respectively. Once this transition is
enabled, it can be triggered as long as no collection request applies to this token since it
has a higher priority of attention. When this enabled transition is eventually triggered, a
notification is sent to the subscribed client to receive it. The output arc from N to NC with
the notation “(u, SI)” indicates this action.

The notifications do not alter the notebook’s content or the list of subscribers, so each
subscriber may continue to receive more notifications from time to time. Likewise, since
there is a notification when allowing the resumption of the actions of a subscriber who
can potentially modify the contents of the notebook, its interleaved execution during the
execution of the collection service is not allowed.

3.2.3. Collect

As indicated in the conceptual model, the collection is a service that allows all the
notebook sheets that meet a pre-established condition to be retrieved. The representation of
this service corresponds to the CPN pattern outlined in blue, as shown in Figure 4a,b. The
service request begins with the insertion of the “COLLECT” token in place S. This initial
marking causes the transition to be enabled. CS that, when triggered, inserts a unitary
token in place CE1. The CC transition is enabled with this marking, thereby initiating
a sequence of actions to carry out the collection. The first action is to remove the entire
content of the HC place, which is where the collected data reside. The second action is to
initialize the place U with all the identifiers corresponding to each notebook page. The
third and last action consists of copying in the destination place HC in each notebook page

Appl. Sci. 2022, 12, 3133 15 of 35

that satisfies the collection condition “[p = SI]” of transition C as shown in Figure 4a. The
three previous actions are carried out sequentially in an indivisible way to guarantee that
all the data in the collection comply with the established condition. Figure 4b shows the
marking after repeatedly firing transition C until it is no longer enabled when no more
pages are found that satisfy the collection condition.

Figure 4. Subscription for collection service behavior. In (a), transition C is enabled by the marking.
In (b), a notification for each subscriber found in place U has been deposited in place HC.

The abstract behavior of the editor services described in the CPN formalism allows
representing the main features of the system application. The platform-independent
computational model is a prototype that is further detailed into a platform-dependent
computational model, according to the technological aspects of the infrastructure available.

3.3. Platform Dependent Computacional Model

The data-driven approach of SCM-IoT is based on a reduced set of services that
enable IoT systems to exhibit relatively complex intelligent behavior. The services up-
date, subscription, and collection, already described in the previous models, are now
described as a platform-dependent computational model built upon the XML, XSL, and
BPEL technologies.

The extensible markup language (XML) is a markup language that consists of a set of
syntactic rules for describing information in both human-readable and machine-readable
formats. The XML schema language uses XML as a metalanguage to rigorously describe
the formation rules of XML structures. The extensible stylesheet language (XSL) is a family
of XML languages designed to transform XML structures. The path language (XPath),
belonging to the XSL family, is heavily used within XSL transformations to access the XML
elements and attributes of the structure.

The business process execution language (BPEL) is an XML language for describing
business process behavior and interaction protocols. BPEL provides service composition
and orchestration through an interoperable model of web services integration to facilitate
business process automation. BPEL can approach a business process description from two
perspectives. The executable processes model is the actual behavior in business interaction,
and the abstract process for business protocols specifies the externally observable behavior
through the exchange of messages without revealing internal behavior.

3.3.1. Storage Medium

The storage medium, represented by a collection of tables in the conceptual model and
as multisets of tuples in the platform-independent computational model, is represented

Appl. Sci. 2022, 12, 3133 16 of 35

as a collection of XML documents in the platform-dependent computational model. The
XML elements representing pages, notification, subscription, and editing notebooks are
described in Listing 1 using the XML schema language.

Listing 1. Definition of element types for page, notebook, notification, and subscription.

Line Code

1 <xs:element name = “PageType” minOccurs = “1” maxOccurs = “unbounded”>
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element name = “id” type = “xs:string” use = “required”/>
5 <xs:element name = “topic-1” type = “Topic-1Type” use = “required”>
6 <xs:ComplexType>
7 <xs:attribute name = “time” type = “xs:int” use = “optional”/>
8 <xs:ComplexType>
9 </xs:element>
10 <xs:element name = “topic-2” type = “Topic-2Type” use = “required”>
11 </xs:sequence>
12 </xs:complexType>
13 </xs:element>
14 <xs:element name = “NotebookType”>
15 <xs:complexType>
16 <xs:sequence>
17 <xs:element name = “page” type = “PageType”/>
18 </xs:sequence>
19 </xs:complexType>
20 </xs:element>
21 <xs:element name = “UpdateType” minOccurs = “1” maxOccurs = “unbounded”>
22 <xs:complexType>
23 <xs:sequence>
24 <xs:element name = “page-id” type = “xs:string” use = “required”/>
25 <xs:element name = “topic” type = “xs:string” use = “required”/>
26 <xs:element name = “value” type = “TopicType” use = “required”/>
27 </xs:sequence>
28 </xs:complexType>
29 </xs:element>

30
<xs:element name = “SubscriptionType” minOccurs = “1” maxOccurs =
“unbounded”>

31 <xs:complexType>
32 <xs:sequence>
33 <xs:element name = “subscriber-id” type = “xs:string” use = “required”/>
34 <xs:element name = “page-id” type = “xs:string” use = “required”/>
35 <xs:element name = “topic” type = “xs:string” use = “required”/>
36 <xs:element name = “notified” type = “xs:boolean” use = “required”/>
37 </xs:sequence>
38 </xs:complexType>
39 </xs:element>

The notebook’s page structure, described by the “PageType” type, contains the field
structure. In the “PageType”, the “page” field has a unique value that identifies the page.
All other fields are required, have a simple type and an optional “time” attribute. The
“time” attribute serves to record the most recent updates of the field, as described later. The
“NotebookType” type is defined as a non-empty sequence of “PageType” elements. The
service request types, “UpdateType”, “SubscriptionType”, and “NotificationType”, define
the structure of updates, subscriptions, and notifications, respectively.

The editor offers access, storage, and generation of new data through the services
announced in the description “EditorServicesPT” of its port type, as indicated in Listing 2.

Appl. Sci. 2022, 12, 3133 17 of 35

Listing 2. Description “EditorServicesPT” of a port typen.

Line Code

1 <wsdl:message name = “UpdateMT“>
2 <wsdl:part name = “notebook” type = “NotebookType”>
3 <wsdl:part name = “page” type = “PageType”>
4 <wsdl:part name = “topic” type = “xs:string”>
5 <wsdl:part name = “note” type = “UpdateType”>
6 </wsdl:message>
7 <wsdl:message name = “SubscriptionMT“>
8 <wsdl:part name = “subscriber-id” type = “xs:string”>
9 <wsdl:part name = “page-id” type = “xs:string”>
10 <wsdl:part name = “topic” type = “xs:string”>
11 </wsdl:message>
12 <portType name = “EditorServicesPT”>
13 <operation name = “update”>
14 <inputMessage name = “UpdateMT”/>
15 </operation>
16 <operation name = “subscribe”>
17 <inputMessage name = “SubscriptionMT”/>
18 </operation>
19 </portType>

In order to shorten and simplify the presentation, in Listing 3 all the pieces of infor-
mation needed to describe the behavior of the editor attending the requested services are
available through BPEL variables with global scope.

Listing 3. Description of the behavior of the editor in BPEL.

Line Code

1 <bpel:variables>
2 <bpel:variable name = “editing” type = “xsd:boolean”/>
3 <bpel:variable name = “notebook” element = “NotebookType”/>
4 <bpel:variable name = “note” element = “NotificationType”/>

5
<bpel:variable name = “subscription” element =

“SubscriptionType”/>
6 </bpel:variables>

The global scope variable “editing” synchronizes exclusive access to the notebook
when relevant data has emerged for a group of subscribers. When the editor checks the
notebook’s content, no client can be considered for service.

To attend to the editing services, the procedure followed by the editor consists of
repeatedly performing two activities sequentially: first, receiving service requests, then
making changes to the content of the notebook according to the requests received. Listing
4 shows a fragment of this procedure that shows in detail. The attention to the update
request has a very similar structure. The relevance of this procedure lies in showing in
detail how the integration of SOA has been achieved through a message-oriented language
and the representation and administration of a shared storage medium where decisions
with various degrees of complexity can be analyzed and made.

Appl. Sci. 2022, 12, 3133 18 of 35

Listing 4. Main control loop for receiving services requests before notebook edition.

Line Code

1 <bpel:if>
2 <bpel:condition>not($editing)</bpel:condition>
3 <bpel:sequence>
4 <bpel:pick>

5
<bpel:onMessage operation = “update” variable = “note” portType =
“NotificationPT” partnetLink = “Producer”>

6 <bpel:scope>
7 <bpel:variables>
8 <bpel:varaible name = “samepage” type = “xsd:boolean”/>
9 <bpel:varaible name = “valueinnotebook” type = “xsd:string”/>
10 <bpel:variable name = “valueinnote” type = “xsd:string”/>
11 </bpel:variables>
12 <bpel:sequence>
13 <bpel:assign><bpel:copy>
14 <bpel:from>
15 <bpel:query>($notebook/$page/@id = $note/@page-id)</bpel:query>
16 </bpel:from>
17 <bpel:to variable = “samepage”/>
18 </bpel:copy></bpel:assign>
19 <bpel:assign><bpel:copy>
20 <bpel:from><bpel:query>
21 ($notebook/$page[@id = $note/@page-id]/@topic)
22 </bpel:query></bpel:from>
23 <bpel:to variable = “valueinnote”/>
24 </bpel:copy></bpel:assign>
25 <bpel:assign><bpel:copy>
26 <bpel:from><bpel:query>($note/@topic)</bpel:query></bpel:from>
27 <bpel:to variable = “valueinnotebook”/>
28 </bpel:copy></bpel:assign>
29 <bpel:if>
30 <bpel:condition>
31 $samepage and $valueinnotebook != $valueinnote</bpel:condition>
32 <bpel:assign><bpel:copy>

33
<bpel:from>bpel:doXslTransform(“update.xsl”, “$notebook”, “$page”,
“topic”, $note)</bpel:from>

34 <bpel:to variable = “notebook”/>
35 </bpel:copy></bpel:assign>
36 </bpel:if>
37 </bpel:sequence>
38 </bpel:scope>
39 </bpel:onMessage>
40 <bpel:onMessage operation = “subscribe”

41
variable = “subscription” port-Type = “SubscriptionType” partnetLink =
“Subscriber”>

42 . . .
43 </bpel:onMessage>
44 </bpel:pick>
45 <!- - Edition and Notification activities shown in next Figure - ->
46 . . .
47 </bpel:sequence>
48 </bpel:if>

Lines 1 and 2 establish the exclusion condition to accept new requests. The condition
establishes that the editor has exclusive access until the completion of his editing activities
as indicated by the variable “editing”. Line 4 establishes the selection dictated by the
BPEL implementation to determine which message will be served next. If two requests are

Appl. Sci. 2022, 12, 3133 19 of 35

received simultaneously, one is selected non-deterministically while the other is discarded.
In a relatively slow-changing IoT environment, losing some messages do not negatively
affect the system performance. In line 5, the received message is declared and accepted in
the <pick/> branch by <onMessage/>. The port type of the update service, the link to the
business partner, and the variable where the request information will be stored are also
indicated. Lines 6 and 38 delimit the scope of the local variables declared in lines 8 to 10.
Lines 13 to 18 show the assignment of the logical expression value given in line 15 to the
variable “samepage” that establishes the first condition to update the notebook. The second
condition is established from lines 19 to 28. In lines 19 to 24, the requested data are received
in “valueinnote” variable. The value registered in the notebook is assigned into the variable
“Valueinnotebook”, as indicated in lines 25 to 28. Both assignments display the Xpath
expressions to obtain the indicated values. In lines 29 to 36, it is decided whether or not to
carry out the update. The updating criterion is given by the conjunction of the two previous
conditions. First, the values to be compared correspond to the same notebook, page, and
topic, and second, the value received is different from the one previously recorded. When
both conditions are met, the update is performed through an XSLT transformation to
the notebook’s contents. Since the notebook structure remains unchanged as long as the
number and type of publisher clients remain unchanged, the corresponding “update.xsl”
operation is straightforward. In line 33, the invocation of the transformation procedure
appears together with its current parameters. In line 34, once the transformation of the
notebook is completed, the updated structure is assigned to the same variable. Finally,
between lines 40 and 43, the second branch of <pick> appears schematically to receive
subscription requests.

The invocation to doXslTransform is what transforms the edit notebook. Notice the
update of the attribute “time” defined for all fields. This attribute establishes how recent
the update is, so newly updated fields will include this attribute with the value of “0”.
The value of this attribute is decremented by one with each update (by invocation of
doXslTransform). Accordingly, in the next update of the notebook, those fields that had the
value of “0” will now have the value “−1”, which makes it possible to distinguish them
from the newly updated ones because the latter will have the value of “0” as said. At the
end of the next update of the notebook, the fields whose attribute “time” had the value
“−1” will now have the value “−2” and so on. Although this counting can be continued,
it is enough to limit the count up to “−2”. Fields that have reached their “time” count
limit are considered not changed recently. As unchanged fields can be easily located, it is
preferable to eliminate their “time” attribute to simplify matters. In summary, the “time”
attribute of each field of a page can:

• Have the value “0”, indicating that it is a recently updated field;
• Have the value “−1”, indicating that it is a previously updated field;
• Have no value, indicating that it is either older or has never changed.

The “time” attribute is important because it allows one to quickly identify those fields
that have been recently updated so that the editor can more efficiently evaluate the sheets
in which they appear. The newly updated pages allow defining the editing actions to be
applied next. These actions can modify other fields on the sheet, triggering notifications
to the corresponding subscribers. The editor is in charge of carrying out all these actions
during the edition of the notebook. The editing procedure is shown in the Listing 5.

Appl. Sci. 2022, 12, 3133 20 of 35

Listing 5. Edition and notification to interested subscribers.

Line Code

1 <bpel:assign><bpel:copy>
2 <bpel:from><bpel:query>true()</bpel:query></bpel:from>
3 <bpel:to variable = “editing”/>
4 </bpel:copy></bpel:assign>
5 <bpel:assign><bpel:copy>

6
<bpel:from>bpel:doXslTransform(“edition.xsl”,

$notebook)</bpel:from>
7 <bpel:to variable = “notebook”/>
8 </bpel:copy></bpel:assign>
9 <bpel:scope>
10 <bpel:variables>
11 <bpel:variable name = “notification” element = “NotificationType”/>
12 </bpel:variables>
13 <bpel:while>
14 <bpel:condition>

15
<bpel:query>exists($notebook/$page/$topic[@time =

“0”])</bpel:query>
16 </bpel:condition>
17 <bpel:sequence>
18 <bpel:assign><bpel:copy>

19
<bpel:from>bpel:doXslTransform(“doEdition.xsl”,
$notebook)</bpel:from>

20 <bpel:to variable = “notebook”/>
21 </bpel:copy></bpel:assign>
22 <bpel:assign><bpel:copy>

23
<bpel:from>bpel:doXslTransform(“doNotification.xsl”, $notebook,
$subscription, $notification)</bpel:from>

24 <bpel:to variable = “notification”/>
25 </bpel:copy></bpel:assign>

26
<bpel:invoke operation = “notify” inputvariable = “notification” portType
= “EditionServicesType” partnerLink = “Subscriber”/>

27 </bpel:sequence>
28 </bpel:while>
29 </bpel:scope>
30 <bpel:assign><bpel:copy>
31 <bpel:from>
32 <bpel:query>false()</bpel:query>
33 </bpel:from>
34 bpel:to variable = “editing”/>
35 </bpel:copy></bpel:assign>

Lines 1 to 4 show the assignment of the logical value true to the exclusion variable
“editing”, which prevents the acceptance and attention of new service requests. Lines 5 to 8
show the transformation of the edition and notification table, applying the transformation
rules given in “edition.xsl” as shown in line 6. The updated notebook is saved again in the
same variable to accumulate the changes indicated on line 8. In lines 9 to 29, the scope is
defined for the variable entered in the declaration that appears on line 11. The notification
cycle to all subscribers for relevant data is shown in lines 13 to 28. In line 15, the editing
condition indicates a field with the attribute “time” set to “0”. When this condition is met,
the transformation of the notebook is carried out, as indicated in line 19. The transformed
notebook (lines 18 to 21) is assigned to the same variable (line 20) to accumulate the updates.
Once the notebook has been updated, the editor searches for relevant data and prepares
the notification to the corresponding subscribers. The preparation consists of updating
the notification notebook, noting the data of interest for the topic and the corresponding
page. Then, the editor sends the notification to the corresponding subscriber, as shown

Appl. Sci. 2022, 12, 3133 21 of 35

in line 26. The edition and notification cycle ends when there are no more changes in the
notebook, as indicated by the absence of any field with “time” attribute throughout all the
notebook’ pages.

Once the edition is finished, the notebook’s content remains stable until a new update
occurs, starting a new edition cycle on the notebook. This behavior is consistent with the
behavior analyzed in Section 3.2.1.

3.3.2. Notify

The interface of the subscription service appears in the portType. The editor’s behavior
follows a similar structure to the update service, except that the updates are made on the
subscription notebook and not on the edition notebook itself. Thus, instead of activating
the editor with each update request, the subscribers are activated with each notification
condition satisfied, as discussed in Section 3.2.2.

3.3.3. Collect

The interface of the subscription service appears in the portType. The behavior
is similar to the subscription for notification service. The essential difference between
both services refers to the sheets involved and the destination of the update. While the
subscription service refers to only one sheet in a notebook, the collection service refers to
only one field throughout all the sheets of the notebook. While the subscription service
affects the same notebook page, the collection service affects other notebooks, pages,
and fields.

In the next section, a case study shows some of the benefits of the approach posed by
the SCM-IoT model. This model allows the integration of the interoperable infrastructure
that the intelligent behavior the application needs.

4. Case Study

An application to home automation of the SCM-IoT model is described below to
demonstrate its flexibility in describing interactions in IoT systems. The shared storage
model allows describing complex events that require the combination of data generated by
various sensors to make decisions, such as, for example, to notify emergency systems when
very high temperatures are observed with the presence of smoke and toxic gases, as well as
to determine the room where the residents of a house are.

4.1. Conceptual Model

The requirements that computational models must meet are listed below:

• Determining at all times the ubication (in one of the rooms) of any inhabitant of
the house;

• Turn on the heater whenever an occupied room has a low temperature. Turn it off
when either the room is no longer occupied or the temperature rises over a threshold;

• Turn on the AC whenever an occupied room has a high temperature. Turn it off when
either the room is no longer occupied, or the temperature falls below a threshold;

• Assess possible emergencies such as fire by analyzing the data reported from tempera-
ture, smog, and toxic gas sensors installed in each room of the house;

• Determine if the house is on fire if three conditions are met in any room: very high
temperature, presence of smog, and presence of toxic gas;

• Turn off the heater, the AC, or both for all rooms if the house is on fire;
• Make urgent calls to the emergency call center, reporting the room in which the

incident started;
• Also, determine if the house is inhabited. Report to the rescuers about those rooms

where residents were detected since the last received sensor data.

The development of the SCM-IoT platform-independent computational model con-
sisted of defining the data model and the three storage and editing services.

Appl. Sci. 2022, 12, 3133 22 of 35

The fields describe the data associated with each sensor or actuator installed in a room.
The most relevant fields are the following:

• ID: room identifier;
• Name: usual name of the room;
• Presence: indicates whether a resident is present in the room (YES or NO);
• Temperature: indicates the temperature range in which the temperature detected by

the sensor is in the room (LOW, NORMAL, HIGH, VERY HIGH);
• Smoke: indicates whether the corresponding sensor has detected smoke in the room

(YES or NO);
• Toxic gas: indicates whether the corresponding sensor has detected toxic gas such as

carbon dioxide in the room (YES or NO);
• Heater: indicates whether the room heater is in operation (YES or NO);
• Cooler: indicates whether the air conditioner in the room is operating (YES or NO);
• Alarm: indicates whether the room’s audible (and visual) alarm is activated (YES

or NO).

Having described the requirements for the IoT system, a more detailed presentation of
the comfort and energy save conditions are given next.

4.1.1. Comfort Conditions and Energy Saving

Among the comfort conditions that the system must guarantee is that the temperature
of a room is pleasant for those who occupy it. In other words, the temperature is between 15
and 25 ◦C, being these limits are subject to configuration adjustments according to personal
preferences. However, energy-saving conditions are also considered, stating that energy
must be only consumed when the room is occupied. Consequently, the conditions to be
jointly met are that:

• The most recently updated temperature is low (comfort condition);
• The room is occupied by at least one resident (energy saving condition);
• The heater or fan (air conditioning) in the room is turned off (condition of reduced

network traffic and consequently emergency saving).

The comfort conditions are the conditions noted in the corresponding transitions in
the instances of the service patterns, as analyzed in the computational models as shown in
Sections 4.2 and 4.3.

4.1.2. Safety Conditions

Safety conditions refer to providing the necessary actions to face contingencies such as
fires. To achieve this end, the conditions that determine a fire are precisely described, and
the rooms are equipped with the necessary detection equipment that provides the required
information on time. The conditions that are jointly fulfilled to determine the existence of
fire are:

• The most recent temperatures obtained by the sensor are VERY HIGH, that is, well
above the usual limits of high temperatures in hot or desert climates;

• The presence of high concentrations of smoke, which is a widely known sign of fire;
• The presence of toxic gases, such as carbon monoxide, is additionally a venous gas.

The safety conditions are established as conditions in the corresponding transitions in
the service patterns as analyzed in the computational models exposed next.

4.2. Platform Independent Computational Model

Figure 5 shows a partial view of the CPN built systematically using the structural
design patterns of the editor services.

Appl. Sci. 2022, 12, 3133 23 of 35

Figure 5. CPN systematically constructed using the SCM-IoT patterns.

In Figure 6, the ellipse representing the notebook appears in the center in pink, with
seven pages, one for each room. In Figure 6, the CPNs representing the instances of
structural patterns that serve the publisher update services appear in the upper part in
green. At the bottom, in red, the CPNs that represent the instances of the subscription–
notification service patterns appear. It should be noted that the fragment corresponding to
the subscription has been omitted to reduce the excess of visual elements that impede its
understanding. Likewise, in the lower part, in blue, appear the CPNs that represent the
pattern of the collection service.

Figure 6. CPN of the update service for the case study.

Figure 6 shows the representation of the update service in greater detail. Compared
to the update pattern shown earlier in Figure 2, only the branch with the transition with
condition “p <> p′” has been included here.

Appl. Sci. 2022, 12, 3133 24 of 35

Figure 7 shows the detail of the subscription notification and collection services.
The notification conditions for the activation or deactivation of the heater are shown.
The activation condition “[p = SI andalso T = LOW andalso c = NO]” in the transition,
determines the updating of the field “c” that refers to the state of the heater, changing the
entry arc annotation from “(u, p, T, h, g, c, v, A)” to “(u, p, T, h, g, SI, v, A)” in the starting
arc annotation. Similarly, the inactivation condition “[(p = SI andalso T = NOR andalso
c = YES) or else (p = NO andalso c = YES) or else (A = SI andalso c = YES)]” specifies the
cases in which that the heater should be turned off corresponding to the cases: (i) when
the room is occupied with normal temperature, and the heater is on, (ii) when the room is
not occupied, but the heater is on, and (iii) when the fire alarm has been activated, and the
heater is on. The activated alarm condition is assumed to be equivalent to the house on fire.

Figure 7. CPN subscription for notification and collection services.

Finally, in Figure 7, the CPN shows the collection and notification service. The three
criteria give the condition to start the collection to determine a fire situation in at least one
house room: very high temperature, smoke, and toxic gas present. The transition “NOTIFES
FIRE” activates the search for residents in each room of the house under the condition
“[p = YES]”. The information with all the resident locations is sent to the emergency services
to facilitate their rescue.

4.3. Platform Dependent Computational Model

A note describing the most relevant aspects of the room status information is repre-
sented as an XML element, which contains a fixed set of sub-elements, each representing
a field of the note. The note and field names are as indicated above. Listing 6 shows an
example of a note in XML.

The page type of a notebook contains minimal domotic information about the room
of a house. Listing 6 shows the room “LIVINGROOM”, identified as “LIV”, occupied by
a resident. The room has a “LOW” temperature for what the system has activated the
operation of the heater (“YES”), deactivated the air conditioning (“NO”), and no detection
for smoke nor toxic gas in the room. Thus, the emergency alarm is deactivated.

Appl. Sci. 2022, 12, 3133 25 of 35

Listing 6. Note in XML.

Line Code

1 <room id = “ROOM”>
2 <name>LIVINGROOM</name>
3 <presence>YES</presence>
4 <Temperature>LOW</Temperature>
5 <smoke>NO</smoke>
6 <toxicgas>NO</toxicgas>
7 <heater>YES</heater>
8 <ventilator>NO</ventilator>
9 <Alarm>NO</Alarm>
10 </room>

4.3.1. Definition of the Notebook Data Model

The edition notebook contains home automation information for each room as defined
above. The book records the known information on the status of each room obtained from
the last update reported by the sensors and from the decisions taken to put the actuators
into operation or not. However, the book has to be placed alongside other notebooks, such
as sensors and actuators notebooks, thus forming a collection and defining the appropriate
context for treating all relevant information for the IoT application. As illustrated in Listing
7, the element “house” is the name of the book collection and establishes the context in
which the room book is located.

Listing 7. Notebook “rooms”.

Line Code

1 <home>
2 <rooms>
3 <room id = “HAL”>
4 <name>HALL</name>
5 . . .
6 </room>
7 <room id = “LIV”>
8 <name>LIVINGROOM</name>
9 . . .
10 </room>
11 . . .
12 . . .
13 </rooms>
14 <sensors> . . . </sensors>
15 <actuators> . . . </actuators>
16 </home>

The notes found in these sub-elements contain the minimum essential information on
the installation location of home automation devices. Consequently, the location determines
the room where the sensors detect environmental information or how the actuators modify
the local ambient conditions. A note from a sensor that essentially includes the identifier and
reading fields. The reading field contains the information that originates in the environment,
corresponding to the most recently obtained by the sensor. Listing 8 presents an excerpt
from the notebook for the sensors.

Appl. Sci. 2022, 12, 3133 26 of 35

Listing 8. Notebook “sensors”.

Line Code

1 <home>
2 <rooms> . . . </rooms>
3 <sensors>
4 <presence>
5 <sensor id = “PRE0”>
6 <reading>NO</reading>
7 </sensor>
8 . . .
9 </presence>
10 <Temperature>
11 <sensor id = “TEM0”>
12 <reading>LOW</reading>
13 </sensor>
14 . . .
15 </Temperature>
16 <smoke>
17 <sensor id = “SMO0”>
18 <reading>NO</reading>
19 </sensor>
20 . . .
21 </smoke>
22 <toxicgas>
23 <sensor id = “TOX0”>
24 <reading>NO</reading>
25 </sensor>
26 . . .
27 </toxicgas>
28 </sensors>
29 <actuators> . . . </actuators>
30 </home>

The sensors were grouped by type into sensors for presence, temperature, smoke,
and toxic gas under corresponding XML elements of the same name. The other types
of sensors have a similar note structure except for the temperature sensor, whose values
reported in the reading field take the values indicated above (‘LOW’, ‘NORMAL’, ‘HIGH’,
‘VERY HIGH’). The notebook for actuators has a similar structure for sensors, grouping
under the XML element actuators, grouped according to their type into heaters, fans (air
conditioners), and alarms. The essential information that each note in the actuator book
contains is its identifier and its operating status. An extract from the notebook for the
actuators is presented in Listing 9.

Unlike the sensors, the status field is writable because it indicates the order given
to the actuator to change its operation immediately, assuming that it is on and in good
operating conditions.

4.3.2. Definition of Notification Conditions for Actuators

Notification conditions for actuators are classified into two parts, comfort and safety.
Comfort and energy-saving conditions. Among the comfort conditions that the system

allows to guarantee is to ensure that the temperature of a room is pleasant for those who
occupy it.

Appl. Sci. 2022, 12, 3133 27 of 35

Listing 9. Notebook “actuators”.

Line Code

1 <home>
2 <rooms> . . . </rooms>
3 <sensors> . . . </sensors>
4 <actuators>
5 <heaters>
6 <actuator id = “HEA0”>
7 <state>NO</state>
8 </actuator>
9 . . .
10 </heaters>
11 <ventilators>
12 <actuator id = “VEN0”>
13 <state>NO</state>
14 </actuator>
15 . . .
16 </ventilators>
17 <Alarms>
18 <actuator id = “ALA0”>
19 <state>NO</state>
20 </actuator>
21 . . .
22 </Alarms>
23 </actuators>
24 </home>

The above conditions are described as logical expressions in the SCM-IoT model
as follows:

$ update/Temperature = ‘LOW’ and
$ update/presence = ‘YES’ and
$ update/heater = ‘NO’
$ update/fan = ‘NO’

In previous expressions, “$ update” designates the variable that represents the last
update of the notebook and that, therefore, contains the most recent information available
on the temperature of the room, the presence of a resident in it, and the state of the heater
or fan (air conditioning) installed in a room.

The above conditions are established as follows:

$ room/Temperature = ‘VERY HIGH’ and
$ room/smoke = ‘YES’ and
$ room/mexico expense = ‘YES’ and
$ Fire = ‘NO’

The variable “$ room” contains a copy of the records recorded in the main book and
consequently corresponds to the most recent readings reported by the sensors.

The presented case study describes the scope of SCM-IoT as established in the con-
tributions provided by this model. The following is a more detailed description of the
contributions:

1. The SCM-IoT model introduces a coordination mechanism where storage, produc-
tion, and notification services are performed on the original data provided by the
content producers. By providing these services, the editor may generate new data
following application-defined rules. The editor coordinates participant activities
through requests for direct modification of the table content (by update services) and
subscriptions for relevant data notifications (by notify and collect services). The editor
offers clients a mediated interaction driven by their interest in relevant data detection
and notification. The centralization of data processing and pattern recognition may

Appl. Sci. 2022, 12, 3133 28 of 35

simplify the design of IoT applications characterized by sensors and actuators with
insufficient computational resources.

2. SCM-IoT is a table-oriented coordination language instead of tuple-oriented as in the
Linda coordination model [20,21]. In SCM-IoT, tables, table entries, and entry fields
are also called notebooks, pages, and topics, respectively. The table model establishes
a fixed number of table entries, each sharing the same fixed number and type of
fields. On the contrary, in the Linda model, tuples can have a distinct and arbitrary
structure and even introduce new ones dynamically during execution. Nonetheless,
the SCM-IoT restriction on the table structure can considerably improve the efficiency
of the representation and processing of the data space used as a coordination medium.
However, this does not limit the expressiveness of the model since several tables
can be simultaneously allocated, each one with its structure and managed by its
corresponding editor. The edition rules determine the type of editor that manages
the table contents. Data production and subscription dependencies can form data
flows among tables in more complex applications. Moreover, to increase the model
efficiency, additional editors of the same type can be introduced for the same table as
long as they do not interfere with each other acting on the same data.

3. As in Linda, in SCM-IoT the content of the data space is accessed and modified by a
reduced set of primitive operations. However, by establishing the data space with a
fixed structure, the SCM-IoT coordination primitives differ from the Linda primitives
in that they do not use the availability principle as a coordination mechanism. In Linda,
the out() operation makes available a new tuple in the data space, while the blocking
in() operation waits for an available tuple matching the description specified by the
operation. In comparison, in SCM-IoT the update() operation modifies the contents of
an entry, while the notify() and collect() operations are the operations that synchronize
the activities of the participants. However, the SCM-IoT coordination mechanism
does not rely on the principle of availability since the table entries already exist
and invariably remain there. Instead, coordination is attained when the information
content of the entries satisfies some given condition. Thus, the blocking operation of
Linda is replaced in SCM-IoT by subscriptions and notifications on the emergence of
relevant data.

4. In SCM-IoT, the static nature of the table is not a conceptual limitation of the model
but a non-functional constraint that ensures greater efficiency during coordination.
A design based on fixed-structure tables may give applications greater clarity by
allowing all logically related entries (i.e., those that follow the same editing rules)
to be grouped under the same table. However, restructuring a table is possible and
requires not updating table entries while performing a collection operation. As can
be seen, this condition can still be fulfilled by blocking access until the collection is
completed. Once completed, constructive reconfiguration of the table that includes
additional fields or entries has no consequences on the suspended applications and
can be resumed afterward. It depends entirely on the specification of new applications
that the addition of new fields or entries in the table does not interfere with the
assumptions on which previous applications were designed. On the other hand,
destructive restructuring (deleting existing and in-use fields or entries) must be
studied on the basis that each application requires.

According to [20], the SCM-IoT coordination model is orthogonal to the computational
model. Decoupled interaction is due to the use of primitive operations that allow synchro-
nized access to the contents of the coordination medium. A table-structured coordination
medium can be represented as a bidimensional array or an XML DOM structure in most
programming languages.

Finally, the design of the SCM-IoT primitive operations could be described in terms
of design patterns [83]. In addition to the observer (publisher–subscriber) pattern, other
patterns have also been used, such as:

Appl. Sci. 2022, 12, 3133 29 of 35

a. Mediator (reduces the complexity of the many direct communication among produc-
ers and subscribers to only one with the editor);

b. State (the editor modifies its behavior in response to the data pattern detected in the
table, including the notification to subscribers);

c. Iterator (the collect() operation is an iterator over each entry of the table);
d. Interpreter (the dynamic definition of the logical conditions, including relationals

(EQUAL, LIKE, BETWEEN) and connectives (AND, OR, NOT, IMPLIES) that describe
the relevant data patterns can be implemented to evaluate at runtime the logical
conditions given in the application rules);

e. Command (the definition of the basic operations that act upon the actuators).

These design patterns can be used to build an implementation that is easier to build,
test, modify, and reuse.

5. Discussion

Regarding the computational models described, even though both models, CPN and
BPEL, are widely accepted and used to design and construct interoperable distributed
systems, there are still severe problems to be solved to satisfy the needs demanded by IoT
systems. Among the most critical problems that have been identified in the development
of IoT systems are the lack of dynamism, limited expressiveness, and the lack of continuity
in the development process.

5.1. Lack of Dynamism

CPNs are an abstract computational model that allows describing and studying the
relationships between parts of a system characterized by their concurrent, asynchronous,
distributed, parallel, non-deterministic, and stochastic properties. For the construction
of IoT systems, CPNs support tools for modeling, visualization, analysis, validation, and
verification of behaviors within a system, as they provide: hierarchical descriptions, in-
teractive simulations, and an intuitive and attractive graphic representation. Although
the abstract model in CPN allows describing the expected functionality of each service,
they also have severe limitations due to the lack of sound dynamics. An example of these
limitations is its inability to include logical conditions in service requests correctly inter-
preted at simulation time, such as passing the condition “p <> p′” as a parameter in an
update request. The reason is that the variables “p” and “p′” that appear in this expression
do not have a denotation as parameters in the update transition U (Figure 2), since it
depends entirely on the names of the variables used in the annotations corresponding
entry arches. In other words, there is no way to denote a transition in CPN as a strictly
evaluated function that can return zero, one, or more output values. In such denotation,
the function’s formal parameters may correspond to the annotations on the input arcs, and
the values evaluated by the function may correspond to the annotations on the output arcs.
Unfortunately, the CPNs do not impose order in the entry (and exit) places and arches.
Although modern programming languages use keywords to designate formal parameters
directly, CPNs do not use keywords either in the input arcs or in the input places. Finally,
there is still the problem of defining an appropriate semantics for this mechanism that
combines functions without side effects in the set of tokens of the CPNs. In summary,
CPNs limit the expressive capacity in the dynamism of the abstract model that IoT systems
require, where interoperable components can be integrated with service demands under
arbitrary conditions. On the other hand, BPEL exhibits the same lack of dynamism that
prevents accepting requests that include conditions of interest during the subscription. The
limitations in both models impose severe limitations on the dynamism in the provision of
services demanded by the IoT.

A solution to solve the lack of dynamism in the provision of services lies in the
possibility of compiling or dynamically interpreting the expressions included in the service
provision rules. From the relational database model perspective, the SCM-IoT model
notebooks can be implemented as tables and the editing services as SQL data manipulation

Appl. Sci. 2022, 12, 3133 30 of 35

and query language commands. Still, SQL expressions must be compiled before being
executed, which could be done dynamically after subscription. However, the problem
with this possible solution is that it demands more computational infrastructure for the
component where the database administrator resides.

However, the SCM-IoT model does not limit the dynamism to establish an interaction
structure between clients and editors, making it possible to discover an editor that offers
the most convenient publishing services for the client’s applications. In order to find an
editor offering the required services, it is possible to start by discovering the most suitable
table structure for the client’s application. For this purpose, the ANTARES algorithm [84]
can be used to discover the table with the topics required by the application and then
identify the corresponding editor. Following this approach, a natural language process-
ing algorithm [85] can be used to build an overlay network among clients (information
producers and subscribers). Advanced selection and discovery information services can
also be offered in a virtual structure built on an initially unstructured environment. These
algorithms provide the means to introduce service discovery improving dynamism into
the SCM-IoT model as future work.

5.2. Limitations

The SCM-IoT model has the following limitations:

• The model is constrained to applications with a fixed interaction structure among
producers and subscribers of information. Further study is needed to address the
problem of fast-changing interaction structures;

• The model is oriented to IoT systems with low message traffic, low speed, and mod-
erate latency. The complexity of the rules can be high, although it is limited by the
storage space available to represent the appropriate size of the notebooks;

• The model proposes an architecture with a broker that provides storage services,
analysis, and coordination between clients. The service architecture uses SOA interop-
erability standards for the composition of web services;

• The participant interaction rules with the storage medium should be designed to
reduce competition for shared data so that they are mutually exclusive in updates and
notifications that do not include co-readings. This limits the applications as the SCM-
IoT model lacks tools to analyze conflicts between the interaction rules. Although
tools such as CPN tools can help remedy this limitation, it is necessary to continue
studying the properties of the representation of the SCM-IoT model with CPN;

• The application of the rules must always end, leading the environment to a stable state
where no further changes are observed. Otherwise, the medium would necessarily
have to be modified by the application without terminating at least one rule. For
this reason, the SCM-IoT model excludes some applications such as complex event
processing [86] that process potentially infinite flows of events;

• The platform-dependent computational model reveals considerable inefficiency for
database CRUD operations implemented on XML and XSL The inefficiency is because
the entire XML document is almost entirely copied except for the updated field. Fortu-
nately, XML document databases [87] offer a more efficient alternative in implementing
CRUD operations.

6. Conclusions

SCM-IoT is a model for developing applications in the context of IoT that has a logically
centralized data-oriented architecture, which allows addressing artificial intelligence and
automated learning applications. These applications involve the collaboration of intelligent
agents that share a storage medium to exchange information and build solutions. Among
the advantages that the SCM-IoT model provides are the following:

• The simplicity and flexibility of the mechanism for integrating new participants;
• The decoupling between the activities of the participants, which gives them a high

degree of independence and autonomy;

Appl. Sci. 2022, 12, 3133 31 of 35

• The distinction between two types of clients according to the storage and publishing
services offered by the editor acting as a broker;

• The flexibility of the proposed producer–editor–subscriber interaction pattern allows
distinguishing clients’ roles according to the services provided by the publisher and
integrating them as interoperable components.

Although the SCM-IoT model is similar to the active database model, there are sub-
stantial differences that are described below in the form of advantages:

• The tables used in IoT applications are small, so the size, complexity, and cost of their
administration that they demand is inconvenient;

• DBs also suffer from a lack of dynamism to accept queries dynamically formulated by
subscribers and incorporate new processing rules;

• The technology used is built on the W3C XML standard;
• Available tools such as XPath and XSLT provide enormous flexibility for modeling

complex data that is difficult to define in the standard relational database model;
• For the representation of knowledge and automated reasoning, XML technology

provides a more suitable way to develop artificial intelligence applications based on
RuleML [88].

Finally, future work intends to increase the expressiveness of the service composition
mechanism in the IoT to include conditions and actions in service requests. For this purpose,
the XML databases for the notebooks’ administration will be investigated to determine if
the computational infrastructure they require conforms to the profile that IoT applications
typically demand.

Likewise, due to the capacity of integration and application to the environment of
the SCM-IoT model, it is considered to extrapolate it to other application domains such as
industrial and transportation and logistics, since in these domains there are also compo-
sition problems of services although with other particular characteristics that have to be
considered. Finally, it is intended to incorporate new intelligent devices that have the new
technical characteristics that are increasing according to the new challenges and challenges
to be addressed in the development of solutions in the context of the IoT.

Author Contributions: Conceptualization, I.M.-C., J.O.O.-A. and G.A.-H.; Data curation, J.O.O.-A.;
Formal analysis, L.R.-M. and A.L.-C.; Funding acquisition, G.A.-H., L.R.-M. and J.L.S.-C.; Investi-
gation, J.L.S.-C.; Methodology, I.M.-C. and J.O.O.-A.; Project administration, G.A.-H.; Resources,
G.A.-H.; Software, I.M.-C., J.O.O.-A. and L.R.-M.; Supervision, L.R.-M. and A.L.-C.; Validation, I.M.-
C., G.A.-H. and L.R.-M.; Visualization, J.L.S.-C. and A.L.-C.; Writing—original draft, I.M.-C. and
J.O.O.-A.; Writing—review and editing, J.O.O.-A. and G.A.-H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Mexico’s National Council of Science and Technology (CONA-
CYT) and the Public Secretariat of Education (SEP) through the Sectorial Fund of Research for
Education, grant number A1-S-51808 and the project 52–2016: “Application of Big Data and Semantic
Web techniques to Develop Intelligent Systems”, a postdoctoral grant, and a doctoral grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns of study.

Acknowledgments: This work was supported by Mexico’s National Technological Institute (TecNM)
and sponsored by both Mexico’s National Council of Science and Technology (CONACYT) and the
Secretariat of Public Education (SEP) through the PRODEP project (Programa para el Desarrollo
Profesional Docente).

Conflicts of Interest: The authors declare that there are no potential conflicts of interest with respect
to the publication of this article.

Appl. Sci. 2022, 12, 3133 32 of 35

References
1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
2. Li, S.; Xu, L.D.; Zhao, S. The Internet of Things: A Survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
3. Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart Objects as Building Blocks for the Internet of Things. IEEE Internet

Comput. 2010, 14, 44–51. [CrossRef]
4. Welbourne, E.; Battle, L.; Cole, G.; Gould, K.; Rector, K.; Raymer, S.; Balazinska, M.; Borriello, G. Building the Internet of Things

Using RFID. IEEE Internet Comput. 2009, 13, 48–55. [CrossRef]
5. Bandyopadhyay, D.; Sen, J. Internet of Things—Applications and Challenges in Technology and Standardization. Wirel. Pers.

Commun. 2011, 58, 49–69. [CrossRef]
6. Botta, A.; De Donato, W.; Persico, V.; Pescape, A. Integration of Cloud Computing and Internet of Things: A Survey. J. Future

Gener. Comput. Syst. 2015, 56, 684–700. [CrossRef]
7. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the First

Edition of the MCC Worshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16. [CrossRef]
8. Luthra, S.; Garg, D.; Mangla, S.K.; Berwal, Y.P.S. Analizing challenges to Internet of Things (IoT) adoption and diffusion: An

Indian context. Proc. Comput. Sci. 2018, 15, 733–739. [CrossRef]
9. Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE

Internet Things J. 2017, 4, 619–635. [CrossRef]
10. Pisching, M.A.; Junquiera, F.; Santos Filho, D.J.; Miyagi, P.E. Service Composition in the Cloud-Based Manufacturing Focused on

the Industry 4.0. Technol. Innov. Cloud-Based Eng. Syst. DoCEIS 2015 IFIP Adv. Inf. Commun. Technol. 2015, 450, 65–72. [CrossRef]
11. Yang, Z.; Li, D. IoT Information Service Composition Driven by User Requirement. In Proceedings of the IEEE 17th International

Conference on Computational Science and Engineering, Chengdu, China, 19–21 December 2014; pp. 509–513. [CrossRef]
12. Macker, J.P.; Taylor, I. Orchestration and analysis of decentralized workflows within heterogeneous networking infrastructures.

Future Gener. Comput. Syst. 2017, 75, 388–401. [CrossRef]
13. Chen, L.; Englund, C. Choreographing services for smart cities: Smart traffic demonstration. In Proceedings of the IEEE 85th

Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [CrossRef]
14. Han, S.N.; Khan, I.; Lee, G.M.; Crespi, N.; Glitho, R.H. Service composition for IP smart object using real-time Web protocols:

Concept and research challenges. Comput. Stand. Interfaces 2016, 43, 79–90. [CrossRef]
15. Mathew, J.; John, J.; Kumar, S. New trends in healthcare supply chain. International Annual Conference, Production and

Operations Management Society. 2013, pp. 1–10. Available online: https://www.pomsmeetings.org/confpapers/043/043-0259
.pdf (accessed on 24 February 2022).

16. De Vries, J.; Huijsman, R. Supply chain management in health services: An overview. Supply Chain. Manag. Int. J. 2011, 16,
159–165. [CrossRef]

17. Chacon-Troya, D.P.; Gonzalez, O.O.; Campoverde, P.C. Domotic application for the monitoring and control of residential
electricalloads. In Proceedings of the 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII), Managua,
Nicaragua, 15–17 November 2017; pp. 1–6. [CrossRef]

18. Machorro-Cano, I.; Alor-Hernández, G.; Paredes-Valverde, M.A.; Ramos-Deonati, U.; Sánchez-Cervantes, J.L.; Rodríguez-
Mazahua, L. PISIoT: A Machine Learning and IoT-Based Smart Health Platform for Overweight and Obesity Control. Appl. Sci.
2019, 9, 3037. [CrossRef]

19. Machorro-Cano, I.; Alor-Hernández, G.; Paredes-Valverde, M.A.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L.; Olmedo-
Aguirre, J.O. HEMS-IoT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving. Energies 2020, 13, 1097.
[CrossRef]

20. Carriero, N.J.; Gelernter, D.; Matson, T.G.; Sherman, A.H. The Linda Alternative to message-passing systems. Parallel Comput.
1994, 2, 633–655. [CrossRef]

21. Ahuja, S.; Carriero, N.; Gelernter, D. Linda and Friends. Comput. IEEE 1986, 19b, 26–34. [CrossRef]
22. Sun, M.; Zhou, Z.; Wang, J.; Du, C.; Gaaloul, W. Energy-Efficient IoT Service Composition for Concurrent Timed Applications.

Future Gener. Comput. Syst. 2019, 100, 1017–1030. [CrossRef]
23. Rapti, E.; Karageorgos, A.; Gerogiannis, V.C. Decentralised Service Composition using Potential Fields in Internet of Things

Applications. Proc. Comput. Sci. 2015, 52, 700–706. [CrossRef]
24. Pang, Z.; Zheng, L.; Tian, J.; Kao-Walter, S.; Dubrova, E.; Chen, Q. Design of a terminal solution for integration of in-home health

care devices and services towards the Internet-of-Things. Enterp. Inf. Syst. 2013, 9, 86–116. [CrossRef]
25. Swiatek, P. ComSS—Platform for Composition and Execution of Streams Processing Services. In Intelligent Information and

Database Systems, Lecture Notes in Computer Science 2015; Springer: Cham, Switzerland, 2015; Volume 9012, pp. 494–505. [CrossRef]
26. Dijkman, R.M.; Sprenkels, B.; Peeters, T.; Janssen, A. Business models for the Internet of Things. Int. J. Inf. Manag. 2015, 35,

672–678. [CrossRef]
27. Shehu, U.G.; Safdar, G.A.; Epiphaniou, G. Network-aware Composition for Internet of Thing Services. Trans. Netw. Commun.

2015, 3, 45–48. [CrossRef]
28. Vidyasankar, K. A Transaction Model for Executions of Compositions of Internet of Things Services. Proc. Comput. Sci. 2016, 83,

195–202. [CrossRef]

http://doi.org/10.1016/j.comnet.2010.05.010
http://doi.org/10.1007/s10796-014-9492-7
http://doi.org/10.1109/MIC.2009.143
http://doi.org/10.1109/MIC.2009.52
http://doi.org/10.1007/s11277-011-0288-5
http://doi.org/10.1016/j.future.2015.09.021
http://doi.org/10.1145/2342509.2342513
http://doi.org/10.1016/j.procs.2017.12.094
http://doi.org/10.1109/JIOT.2017.2664072
http://doi.org/10.1007/978-3-319-16766-4_7
http://doi.org/10.1109/CSE.2014.280
http://doi.org/10.1016/j.future.2017.01.007
http://doi.org/10.1109/VTCSpring.2017.8108625
http://doi.org/10.1016/j.csi.2015.08.006
https://www.pomsmeetings.org/confpapers/043/043-0259.pdf
https://www.pomsmeetings.org/confpapers/043/043-0259.pdf
http://doi.org/10.1108/13598541111127146
http://doi.org/10.1109/CONCAPAN.2017.8278471
http://doi.org/10.3390/app9153037
http://doi.org/10.3390/en13051097
http://doi.org/10.1016/0167-8191(94)90032-9
http://doi.org/10.1109/MC.1986.1663305
http://doi.org/10.1016/j.future.2019.05.070
http://doi.org/10.1016/j.procs.2015.05.079
http://doi.org/10.1080/17517575.2013.776118
http://doi.org/10.1007/978-3-319-15705-4_48
http://doi.org/10.1016/j.ijinfomgt.2015.07.008
http://doi.org/10.14738/tnc.31.961
http://doi.org/10.1016/j.procs.2016.04.116

Appl. Sci. 2022, 12, 3133 33 of 35

29. Gierej, S. The framework of business model in the context of Industrial Internet of Things. Proc. Eng. 2017, 182, 206–212.
[CrossRef]

30. Ju, J.; Kim, M.S.; Ahn, J.H. Prototyping Business Models for IoT Service. Proc. Comput. Sci. 2016, 91, 882–890. [CrossRef]
31. Urbieta, A.; González-Beltrán, A.; Mokhtar, S.B.; Hossain, M.A.; Capra, L. Adaptive and context-aware service composition for

IoT-based smart cities. Future Gener. Comput. Syst. 2017, 76, 262–274. [CrossRef]
32. Salle, A.D.; Gallo, F.; Perucci, A. Dependable Composition of Software and Services in the Internet of Things: A Biological

Approach. In Software Engineering and Formal Methods, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2016; Volume 9509, pp. 312–323. [CrossRef]

33. Baker, T.; Asim, M.; Tawfik, H.; Aldawsari, B.; Buyya, R. An energy-aware service composition algorithm for multiple cloud-based
IoT applications. J. Netw. Comput. Appl. 2017, 89, 96–108. [CrossRef]

34. Yamaoka, H.; Itakura, K.; Takahashi, E.; Nakagawa, G.; Michaelis, J.; Kanemasa, Y.; Ueki, M.; Matsumoto, T.; Take, R.; Tanie,
S.; et al. Dracena: A Real-Time IoT Service Platform Based on Flexible Composition of Data Streams. In Proceedings of the
IEEE/SICE International Symposium on System Integration, Paris, France, 14–16 January 2019; pp. 596–601. [CrossRef]

35. Krishna, A.; Pallec, M.L.; Mateescu, R.; Noirie, L.; Salaun, G. IoT Composer: Composition and Deployment of IoT Applications.
In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), Montreal, QC, Canada, 25–31 May 2019; pp. 19–22. [CrossRef]

36. Ridhawi, I.A.; Aloqaily, M.; Boukerche, A.; Jaraweh, Y. A Blockchain-Based Decentralized Composition Solution for IoT Services.
In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020;
pp. 1–6.

37. Lakhdari, A.; Bouguettaya, A.; Mistry, S.; Azadeh, G.N. Composing Energy Services in a Crowdsourced IoT Environment. In
Proceedings of the IEEE Transactions on Services Computing, Sydney, NSW, Australia, 22–24 April 2020; pp. 1–14. [CrossRef]

38. Arellanes, D.; Lau, K.-K. Evaluating IoT service composition mechanisms for the scalability of IoT systems. Future Gener. Comput.
Syst. 2020, 108, 827–848. [CrossRef]

39. Abusafia, A.; Bouguettaya, A.; Mistry, S. Incentive-Based Selection and Composition of IoT Energy Services. In Proceedings of the
IEEE International Conference on Services Computing (SCC), Beijing, China, 18–24 October 2020; pp. 304–311. [CrossRef]

40. Cano, J.; Rutten, E.; Delaval, G.; Benazzouz, Y.; Gurgen, L. ECA Rules for IoT Environment: A Case Study in Safe Design. In
Proceedings of the IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops, London, UK,
8–12 September 2014; pp. 116–121. [CrossRef]

41. Giang, N.K.; Lea, R.; Blackstock, M.; Leung, V. On building smart city IoT applications: A coordination-based perspective. In
Proceedings of the 2nd International Workshop on Smart; ACM: New York, NY, USA, 2016; p. 7. [CrossRef]

42. Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-aware iot service coordination using the event-driven soa paradigm. IEEE Trans.
Netw. Serv. Manag. 2016, 13, 349–361. [CrossRef]

43. Belkeziz, R.; Jarir, Z. IoT Coordination: Designing a context-driven architecture. In Proceedings of the International Conference
on Signal-Image Technology & Internet-Based Systems (SITIS), Jaipur, India, 4–7 December 2017; pp. 388–395. [CrossRef]

44. García-Magariño, I.; Gray, G.; Muttukrishnan, R.; Asif, W. Agent-based IoT Coordination for Smart Cities Considering Security
and Privacy. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), Granada, Spain, 22–25 October 2019; pp. 221–226. [CrossRef]

45. Belkeziz, R.; Jarir, Z. An Overview of the IoT Coordination Challenge. Int. J. Serv. Sci. Manag. Eng. Technol. IJSSMET 2020, 11,
99–115. [CrossRef]

46. Cubo, J.; Nieto, A.; Pimentel, E. A Cloud-Based Internet of Things Platform for Ambient Assisted Living. Sensors 2014, 14,
14070–14105. [CrossRef]

47. Qu, C.; Liu, F.; Tao, M.; Deng, D. An OWL-S Based Specification Model of Dynamic Entity Services for Internet of Things. J.
Ambient. Intell. Humaniz. Comput. 2016, 7, 73–82. [CrossRef]

48. Yu, J.; Bang, H.C.; Lee, H.; Lee, Y.S. Adaptive Internet of Things and Web of Things convergence platform for Internet of reality
services. J. Supercomput. 2016, 72, 84–102. [CrossRef]

49. Bergesio, L.; Bernardos, A.M.; Casar, J.R. An Object-Oriented Model for Object Orchestration in Smart Environments. Proc.
Comput. Sci. 2017, 109C, 440–447. [CrossRef]

50. Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog orchestration for internet of things services. IEEE Internet Comput.
2017, 21, 16–24. [CrossRef]

51. Ren, M.; Ren, L.; Jain, H. Manufacturing service composition model based on synergy effect: Asocial network analysis approach.
Appl. Soft Comput. 2018, 70, 288–300. [CrossRef]

52. Pahl, C.; El Ioini, N.; Helmer, S.; Lee, B. An architecture pattern for trusted orchestration in IoT edge clouds. In Proceedings of the
2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 63–70.
[CrossRef]

53. Malik, S.; Ahmad, S.; Kim, D. A Novel Approach of IoT Services Orchestration Based on Multiple Sensor and Actuator Platforms
Using Virtual Objects in Online IoT App-Store. Sustainability 2019, 11, 5859. [CrossRef]

54. Ren, W.; Sun, Y.; Luo, H.; Obaidat, M.S. A New Scheme for IoT Service Function Chains Orchestration in SDN-IoT Network
Systems. IEEE Syst. J. 2020, 13, 4081–4092. [CrossRef]

http://doi.org/10.1016/j.proeng.2017.03.166
http://doi.org/10.1016/j.procs.2016.07.106
http://doi.org/10.1016/j.future.2016.12.038
http://doi.org/10.1007/978-3-662-49224-6_25
http://doi.org/10.1016/j.jnca.2017.03.008
http://doi.org/10.1109/SII.2019.8700465
http://doi.org/10.1109/ICSE-Companion.2019.00028
http://doi.org/10.1109/TSC.2020.2980258
http://doi.org/10.1016/j.future.2020.02.073
http://doi.org/10.1109/SCC49832.2020.00047
http://doi.org/10.1109/SASOW.2014.32
http://doi.org/10.1145/3009912.3009919
http://doi.org/10.1109/TNSM.2016.2541171
http://doi.org/10.1109/SITIS.2017.70
http://doi.org/10.1109/IOTSMS48152.2019.8939194
http://doi.org/10.4018/IJSSMET.2020010107
http://doi.org/10.3390/s140814070
http://doi.org/10.1007/s12652-015-0302-y
http://doi.org/10.1007/s11227-015-1489-6
http://doi.org/10.1016/j.procs.2017.05.415
http://doi.org/10.1109/MIC.2017.36
http://doi.org/10.1016/j.asoc.2018.05.039
http://doi.org/10.1109/FMEC.2018.8364046
http://doi.org/10.3390/su11205859
http://doi.org/10.1109/JSYST.2019.2921786

Appl. Sci. 2022, 12, 3133 34 of 35

55. Rafique, W.; Zhao, X.; Yu, S.; Yaqoob, I.; Imran, M.; Dou, W. An Application Development Framework for Internet-of-Things
Service Orchestration. IEEE Internet Things J. 2020, 7, 4543–4556. [CrossRef]

56. Serhani, M.A.; El-Kassabi, H.T.; Shuaib, K.; Navaz, A.N.; Benatallah, B.; Beheshti, A. Self-adapting cloud services orchestration for
fulfilling intensive sensory data-driven IoT workflows. Future Gener. Comput. Syst. 2020, 108, 583–597. [CrossRef]

57. Rodríguez-Valenzuela, S.; Holgado-Terriza, J.A.; Gutiérrez-Guerrero, J.M.; Muros-Cobos, J.L. Distributed Service-Based Approach
for Sensor Data Fusion in IoT Environments. Sensors 2014, 14, 19200–19228. [CrossRef]

58. Dar, K.; Taherkordi, A.; Baraki, H.; Eliassen, F.; Geihs, K. A resource oriented integration architecture for the Internet of Things: A
business process perspective. Pervasive Mob. Comput. 2015, 20, 145–159. [CrossRef]

59. Duhart, C.; Sauvage, P.; Bertelle, C. A Resource Oriented Framework for Ser-vice Choreography over Wireless Sensor and Actor
Networks. Int. J. Wirel. Inf. Netw. 2016, 23, 173–186. [CrossRef]

60. Cherrier, S.; Ghamri-Doudane, Y.; Lohier, S.; Roussel, G. D-LITe: Building Internet of Things Choreographies. arXiv 2016,
arXiv:1612.05975.

61. Blanc, S.; Bayo-Monton, J.L.; Campelo, J.C.; Fernandez-Llatas, C. Process Choreography in Wireless Sensor and Actuator
Networks: A proposal to achieve Network Virtualization. Int. J. Actor-Netw. Theory Technol. Innov. 2016, 1–11.

62. Montali, M.; Plebani, P. IoT-based Compliance Checking of Multi-partyBusiness Processes modeled with Commitments. In
European Conference on Service-Oriented and Cloud Computing; Springer: Cham, Switzerland, 2017; Volume 10465, pp. 179–195.
[CrossRef]

63. Seeger, J.; Deshmukh, R.A.; Bröring, A. Running Distributed and Dynamic IoT Choreographies. In Proceedings of the 2018 IEEE
Global Internet of Things Summit (GIoTS) Proceedings, Bilbao, Spain, 4–7 June 2018; Volume 2, pp. 33–38. [CrossRef]

64. Singhal, N.; Sakthivel, U.; Raj, P. Selection Mechanism of Micro-Services Orchestration vs. Choreography. Int. J. Web Semant.
Technol. IJWesT 2019, 10, 25. [CrossRef]

65. Arreaga, N.X.; Blanc, S.; Rivas, L.V.; Palanca, S. Implementation of choreography services for precision agriculture based on
real-time monitoring and control system using WSN. EURASIP J. Wirel. Commun. Netw. 2021, 1, 1–20. [CrossRef]

66. Ding, Z.; Yang, R. Modeling and Analysis for Mobile Computing Systems Based on Petri Nets: A Survey. IEEE Access 2018, 6,
68038–68056. [CrossRef]

67. Llorens, M.; Oliver, J. Structural and dynamic changes in concurrent systems: Reconfigurable Petri nets. IEEE Trans. Comput.
2004, 53, 1147–1158. [CrossRef]

68. Lamport, L. Turing Lecture: The Computer Science of Concurrency: The Early Years. Commun. ACM 2015, 58, 71–76. [CrossRef]
69. Nielsen, M.; Sassone, V.; Winskel, G. Relationships between models of concurrency. In A Decade of Concurrency Reflections

and Perspectives. REX 1993. Lecture Notes in Computer Science; De Bakker, J.W., de Roever, W.P., Rozenberg, G., Eds.; Springer:
Berlin/Heidelberg, Germany, 1994; Volume 803, pp. 425–476. [CrossRef]

70. Lee, E.A.; Sangiovanni-Vincentelli, A. A Framework for Comparing Models of Computation. IEEE Trans. Comput. Aided Des.
Circuits Syst. 1998, 17, 1217–1229. [CrossRef]

71. Castellano, L.; De Michelis, G.; Pomello, L. Concurrency vs interleaving: An instructive example. Bull. EATCS 1987, 31, 12–15.
72. Milner, R. A Calculus of Communicating Systems, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1982;

Volume 92, pp. 11–26.
73. Hoare, C.A.R. Communicating sequential processes. Commun. ACM 1978, 21, 666–677. [CrossRef]
74. Ojo, K.; González, Y.; Cano, E.E.; Rovetto, C.A. Modelado del funcionamiento de un dispositivo para el control de la asistencia

estudiantil mediante Redes de Petri Coloreadas. II Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y
Salud Electrónica y Móvil–AmITIC 201, Chiriqui, Panama, 12–14 September 2018; 1, pp. 13–20.

75. Zhou, J.; Reniers, G. A Petri-net based simulation analysis approach for cascading effect of vapor cloud explosions. J. Loss Prev.
Process Ind. 2017, 48, 118–125. [CrossRef]

76. Corradini, A. Concurrent computing: From Petri nets to graph grammars. Electron. Theor. Comput. Sci. 1995, 2, 56–70. [CrossRef]
77. Milner, R. Communicating and Mobile Systems: The Pi Calculus, 1st ed.; Cambridge University Press: New York, NY, USA, 1999;

pp. 1–174.
78. Jensen, K.; Kristensen, L.M. Colored petri nets: A graphical language for formal modeling and validation of concurrent systems.

Commun. ACM 2015, 58, 61–70. [CrossRef]
79. Jensen, K.; Kristensen, L.; Wells, L. Coloured petri nets and CPN tools for modelling and validation of concurrent systems. Int. J.

Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]
80. Tan, C.W.; Goh, A. Implementing ECA rules in an active database. Knowl.-Based Syst. 1999, 12, 137–144. [CrossRef]
81. Dittrich, K.R.; Gatziu, S.; Geppert, A. The Active Database Management System Manifesto: A Rulebase of ADBMS Features. Rules

in Database Systems. RIDS 1995. Lecture Notes in Computer Science; Sellis, T., Ed.; Springer: Berlin/Heidelberg, Germany, 1995;
Volume 985, pp. 3–20. [CrossRef]

82. Forgy, C. On the Efficient Implementation of Production Systems. Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, MA,
USA, 1979.

83. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley
Professional: Boston, MA, USA, 1994.

http://doi.org/10.1109/JIOT.2020.2971013
http://doi.org/10.1016/j.future.2020.02.066
http://doi.org/10.3390/s141019200
http://doi.org/10.1016/j.pmcj.2014.11.005
http://doi.org/10.1007/s10776-016-0316-1
http://doi.org/10.1007/978-3-319-67262-5_14
http://doi.org/10.1109/MPRV.2019.2907003
http://doi.org/10.5121/ijwest.2019.10101
http://doi.org/10.21203/rs.3.rs-137962/v1
http://doi.org/10.1109/ACCESS.2018.2878807
http://doi.org/10.1109/TC.2004.66
http://doi.org/10.1145/2771951
http://doi.org/10.1007/3-540-58043-3_25
http://doi.org/10.1109/43.736561
http://doi.org/10.1145/359576.359585
http://doi.org/10.1016/j.jlp.2017.04.017
http://doi.org/10.1016/S1571-0661(05)80181-1
http://doi.org/10.1145/2663340
http://doi.org/10.1007/s10009-007-0038-x
http://doi.org/10.1016/S0950-7051(99)00028-3
http://doi.org/10.1007/3-540-60365-4_116

Appl. Sci. 2022, 12, 3133 35 of 35

84. Forestiero, A.; Mastroianni, C.; Spezzano, G. Antares: An ant-inspired P2P information system for a self-structured grid. In
Proceedings of the 2nd Bio-Inspired Models of Network, Information and Computing Systems, Budapest, Hungary, 10–12
December 2007; pp. 151–158. [CrossRef]

85. Forestiero, A.; Papuzzo, G. Agents-based algorithm for a distributed information system in Internet of Things. IEEE Internet
Things J. 2021, 8, 16548–16558. [CrossRef]

86. Luckham, D. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, 1st ed.; Addison-
Wesley Professional: Boston, MA, USA, 2002; p. 376.

87. Pavlovic-Lazetic, G. Native XML databases vs. relational databases in dealing with XML documents. Kragujev. J. Math 2007, 30,
181–199.

88. RuleML Home. Available online: http//www.ruleml.org (accessed on 8 November 2021).

http://doi.org/10.1109/BIMNICS.2007.4610103
http://doi.org/10.1109/JIOT.2021.3074830
http//www.ruleml.org

	Introduction
	Related Work
	IoT Services Composition and Coordination
	IoT Services Orchestration and Choreography
	Abstract Models of Distributed Systems
	Coloured Petri Nets (CPN)
	ECA Rules

	Methodology
	Conceptual Model
	Update
	Subscription for Notification (Notify)
	Subscription for Collection (Collect)

	Platform Independent Computational Model
	Update
	Notify
	Collect

	Platform Dependent Computacional Model
	Storage Medium
	Notify
	Collect

	Case Study
	Conceptual Model
	Comfort Conditions and Energy Saving
	Safety Conditions

	Platform Independent Computational Model
	Platform Dependent Computational Model
	Definition of the Notebook Data Model
	Definition of Notification Conditions for Actuators

	Discussion
	Lack of Dynamism
	Limitations

	Conclusions
	References

